
SITE CHARACTERIZATION REPORT

SBGN: Bergün/Bravuogn (GR) - Schule

Manuel Hobiger, Paolo Bergamo, Donat Fäh

Last Modification: 16/04/2020

Schweizerischer Erdbebendienst (SED)
Service Sismologique Suisse
Servizio Sismico Svizzero
Servizi da Terratrembels Svizzer

ETH Zürich
Sonneggstrasse 5
8092 Zürich
Schweiz
manuel.hobiger@sed.ethz.ch





Contents

1 Introduction 5

2 Geological setting 6

3 Site characterization measurements 7
3.1 Data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 H/V and RayDec ellipticity curves . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Polarization analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 3-component high-resolution FK . . . . . . . . . . . . . . . . . . . . . . . . 10
3.5 WaveDec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.6 SPAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Data inversion 19
4.1 Inversion targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Inversion parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Inversion results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4 Overview of the inversion result . . . . . . . . . . . . . . . . . . . . . . . . 29
4.5 Site amplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.6 Quarter-wavelength representation . . . . . . . . . . . . . . . . . . . . . . . 31

5 Conclusion 32

References 33

3



Summary

The free-field strong-motion station SBGN was built in Bergün/Bravuogn (GR) next to
the building that houses the administration and the school. We performed a passive
seismic array measurement with two array configurations to characterize the soil under-
neath the station.
The measurements show that the fundamental frequency of the structure beneath the
station is about 3 Hz. The array measurements were analyzed with different techniques,
namely 3-component HRFK, WaveDec and SPAC. All techniques gave similar dispersion
curves. The dispersion curves for the fundamental modes of both Love and Rayleigh
waves could be retrieved from around 2.9 to 51.7 Hz and 3.6 to 41.5 Hz, respectively.
The joint inversion of Love and Rayleigh wave dispersion curves and the Rayleigh wave
ellipticity angle showed that the structure can be explained by models with two main
interfaces at around 2.5 m and 80 m depth, where the latter corresponds to H800. The VS30
of the best models is about 638 m/s, corresponding to soil class B in both EC8 and SIA261.
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1 Introduction

In the framework of the second phase of the Swiss Strong Motion Network (SSMNet)
renewal project, a new station was planned in Bergün/Bravuogn (GR) to replace the old
station SBET, which was located in an electrical cabinet on the Albula pass road south of
Bergün. The area behind the building housing the school and the public administration
was selected as the best site. The new station, called SBGN, went operational on 15 July
2015. The location of the station is shown in Fig. 1.

Figure 1: Map showing the location of station SBGN and the old station SBET in Bergün.
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2 Geological setting

A geological map of the surroundings of station SBGN is shown in Fig. 2. The station is
located on the transition from alluvial deposits of the Albula Valley to moraine. Accord-
ing to the map, some stations of the passive array measurement were located on alluvial
deposits, some on moraine.

Figure 2: Geological map of the area around station SBGN. According to the geological atlas
(1:25000), station SBGN lies on the transition zone between alluvial deposits and moraine. c©2020
swisstopo (JD100042)
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3 Site characterization measurements

3.1 Data set

In order to characterize the local underground structure around station SBGN, passive
seismic array measurements were carried out on 10 October 2015. The layout of the
seismic measurements is shown in Fig. 3.
Two array measurements were performed (see Table 1 for the main characteristics). The
first array consisted of 14 running stations. Two additional stations were deployed, but
not working. The first array was planned to consist of two inner rings of five stations
each around a central station, with ring radii of 5 m and 18 m, respectively. In addition,
another five stations were planned on a ring with its center shifted towards the southwest,
located inside the school building. This ring had a planned radius of 36 m. One of the
stations of this array, SBGN01, was located close to the permanent station SBGN. The
final minimum and maximum inter-station distances in the array were 4.9 m and 88.9 m,
respectively. The names of the stations of the first array are composed of "SBGN" followed
by a two-digit number (01 to 03, 05 to 12, 22, 29, 30). The seismic stations consisted of
Lennartz 3C 5 s sensors connected to Quanterra Q330 digitizers.
The second array consisted of 9 stations. For this array, four stations located on the third
ring of the first array were kept. Another ring of five stations with a radius of around
100 m was placed around these stations. The minimum and maximum inter-station
distances of the second array were 38.0 and 212.5 m, respectively. The station names
of the stations in the second array are composed of "SBGN" and a two-digit number
between 51 and 62 (51, 53, 55, 56, 58, 59, 60, 61, 62).
The station locations have been measured by a differential GPS system (Leica Viva GS10)
with a precision better than 5 cm for all stations.

Table 1: List of the passive seismic array measurements in Bergün.

Array Number of Minimum interstation Maximum interstation Recording
name sensors distance [m] distance [m] time [s]

1 14 4.9 88.9 7200
2 9 38.0 212.5 8100
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Figure 3: Layout of the array measurements around station SBGN. The location of SBGN is
indicated by the white triangle, the locations of the stations for the passive seismic measurement
by the orange triangles (first array) and red squares (second array). The two gray triangles show
the locations of the two sensors which were not recording. c©2020 swisstopo (JD100042)
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3.2 H/V and RayDec ellipticity curves

Figure 4 shows the H/V curves determined with the time-frequency analysis method
(Fäh et al., 2009) for all stations of both passive arrays. All curves are similar and
show a broad peak between 2 and 3.2 Hz. At frequencies above 10 Hz, there is more
variability in the curves, related with shallow variations in the underground structure.
One curve is significantly lower than the other curves below 1 Hz. This curve belongs to
the northwesternmost station, which was located close to the cemetery. Another curve is
lower than the others around the peak. This curve belongs to the northernmost array
station, located close to the Kurhaus. In this area, the deeper underground structure may
be different from the central areas of the array.
The RayDec technique (Hobiger et al., 2009) is supposed to eliminate the contributions of
other wave types than Rayleigh waves and give a better estimate of the ellipticity than
the classical H/V technique. The RayDec ellipticity curves for all stations of the array
measurements are shown in Fig. 4 and are similar to the H/V curves. Station SBGN01,
the station closest of SBGN, serves as a reference and will be used for the inversion.
The amplitudes of both the H/V and the RayDec peaks are not especially high, with
values between 2 and 3 for H/V and up to 4 for RayDec. However, the trough at
frequencies of around 5 Hz is very pronounced with low values of around 0.5 for H/V
and RayDec. We can interpret this as a hint for singularities in the ellipticity curve. In that
case, the peak would go towards infinity and the trough towards zero. At frequencies
below the peak and above the trough, the Rayleigh wave particle motion would then be
retrograde. Between peak and trough, it would be prograde. The WaveDec processing
(see section 3.5) will give more insight in the particle motion.

Figure 4: Left: Overview of the H/V measurements for the different stations of both array mea-
surements. Right: RayDec ellipticities for all measurement stations. The red curve corresponds to
SBGN01, the station located closest of the permanent station SBGN.
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3.3 Polarization analysis

The polarization analysis was performed according to Burjánek et al. (2010) and Burjánek
et al. (2012). The results for all stations of the array are similar. Only the results for
SBGN01, the station closest to SBGN, are shown here.
There is no preferential linear particle polarization visible and we do not see indications
for 2-dimensional polarization effects.

Figure 5: Polarization analysis of station SBGN01.

3.4 3-component high-resolution FK

The results of the 3-component high-resolution FK analysis (Poggi and Fäh, 2010) are
shown in Fig. 6 (dispersion curves) and Fig. 7 (ellipticity curves). On the transverse
component, corresponding to Love waves, we can clearly identify a dispersion curve
for array 1 from 7.2 up to 51.7 Hz and for array 2 from 2.9 to 8.7 Hz, covering the entire
accessible frequency range for each array.
On the vertical component, corresponding to Rayleigh waves, we can clearly identify
one mode between 6.3 and 45.1 Hz for array 1 and between 3.6 and 8.3 Hz for array 2,
spanning almost the entire accessible frequency range. On the radial component, also
related with Rayleigh waves, the results are similar for array 1, where, in addition to
the fundamental mode, a higher mode can be retrieved. For array 2, the result is more
scattered than for the vertical component.
The corresponding ellipticity curves of these modes (Fig. 7) are mostly flat and show
signs of an ellipticity peak below the lowest accessible frequency.
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Figure 6: Dispersion curves obtained with the 3-component HRFK algorithm (Poggi and Fäh,
2010). From top to bottom, the dispersion curves for the transverse, vertical and radial compo-
nents are shown for array 1 (left column) and array 2 (right column). The dashed and dotted
black lines are the array resolution limits. The solid green lines are picked from the data, where
the inner line indicates the picked values and the two outer lines the standard deviation.
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Figure 7: Ellipticity curves obtained with the 3-component HRFK algorithm (Poggi and Fäh, 2010)
corresponding to the picked dispersion curves on the vertical and radial components for array 1
(left column) and array 2 (right column).
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3.5 WaveDec

The results of the WaveDec (Maranò et al., 2012) processing are shown in Figs 8 and 9.
This technique estimates the properties of single or multiple waves simultaneously with
a wave field decomposition approach. In order to improve the results, the parameter γ,
which modifies the sharpness of the wave property estimation, has been tuned. Here,
a value of γ = 0.2 was used, corresponding to a predominantly maximum likelihood
estimation.
The Love wave dispersion curve for array 1 is not well retrieved at lower frequencies
and was only picked between 18.0 and 49.4 Hz. For array 2, the result is clearer and the
curve was picked between 2.8 and 8.1 Hz.
The Rayleigh wave dispersion curve is retrieved between 6.5 and 57.7 Hz for array 1
and, less clearly, between 3.7 and 7.7 Hz for array 2. The ellipticity angles for the picked
Rayleigh wave dispersion curves are negative for array 1 up to a frequency of around
50 Hz, where a change to prograde may be present. For array 2, the ellipticity angle is
positive for frequencies below 4.5 Hz, indicating prograde particle motion, and negative
above.

Figure 8: Love (top line) and Rayleigh (bottom line) wave dispersion curves obtained with the
WaveDec technique (Maranò et al., 2012) for array 1 (left) and array 2 (right). The dashed lines
indicate the theoretical array resolution limits.
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Figure 9: Rayleigh wave ellipticity curves obtained with the WaveDec technique (Maranò et al.,
2012). Top line: Rayleigh wave ellipticity angles obtained using array 1 (left) and array 2 (right).
Bottom line: Rayleigh wave ellipticity curve, i.e. the absolute value of the tangent of the ellipticity
angle, for the curve of array 1 (left) and array 2 (right).
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3.6 SPAC

Figure 10: SPAC curves for array 1 (left) and array 2 (right). The black data points contributed to
the dispersion curve estimation.
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The SPAC (Aki, 1957) curves of the vertical components have been calculated using the
M-SPAC (Bettig et al., 2001) technique implemented in geopsy. Rings with different
radius ranges had been defined previously and for all station pairs with distance inside
this radius range, the cross-correlation was calculated over a wide frequency range.
These cross-correlation curves are averaged for all station pairs of the respective ring
and give the SPAC curves. The rings are defined in such a way that at least three station
pairs contribute and that their connecting vectors have a good directional coverage.
The SPAC curves for all defined rings are shown in Fig. 10. The black points indicate
the data values which contributed to the final dispersion curve estimation, which was
obtained with the function spac2disp of the geopsy package. These resulting dispersion
curves are shown in Fig. 11.
The calculated SPAC curves have the shape of the theoretical Bessel functions. The
retrieved Rayleigh wave dispersion curves range from 3.6 to 30.6 Hz for array 1 and from
3.7 to 8.0 Hz for array 2.

Figure 11: Resulting Rayleigh wave velocities for array 1 (left) and array 2 (right). The black line
corresponds to the picked dispersion curve.
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3.7 Summary

Fig. 12 gives an overview of the dispersion and ellipticity curves determined by the
different methods.
For Love waves, the HRFK and WaveDec results for the respective arrays are in good
overall agreement. In the transition area between both arrays, the curve from array 2 has
lower velocities than the one for array 1 at frequencies above 7 Hz. It might be possible
that the first higher mode influences the measurement with array 1 here. Combining
both arrays, we can attribute a dispersion curve from 2.9 to 51.7 Hz.
For the Rayleigh waves, there is a very good agreement between the different methods.
The radial HRFK curve of array 1 shows slightly higher velocity values and also shows a
higher mode, but its attribution is unclear. At low frequencies, SPAC shows systemati-
cally lower velocities. Combining the different methods, we can attribute a continuous
dispersion curve for the fundamental mode from 3.6 to 45.1 Hz.
The ellipticity curves retrieved using the different methods are in qualitative agreement.
The single-station ellipticity curve determined with RayDec is the only one to cover
frequencies lower than 4 Hz. It shows a broad peak between 2 and 3.5 Hz and a trough at
around 5 Hz. At higher frequencies, RayDec shows another peak between 15 and 20 Hz.
WaveDec shows a singular trough at about 4.5 Hz for array 2. The WaveDec curve for
array 1 is in good agreement with the RayDec curve if we take into account that the
RayDec curve is a single-station measurement and the WaveDec curve an average over
the whole array.
The RayDec curve was transformed to ellipticity angle by using the arctan function. As
we cannot distinguish between prograde and retrograde particle motion with a single-
station method, we account for both possibilities and the RayDec (and HRFK) curves are
represented twice, once for each sense of rotation. In the ellipticity angle representation,
the WaveDec curve of array 2 shows prograde particle motion below 4.5 Hz and retro-
grade particle motion above. The WaveDec curve of array 1 shows retrograde particle
motion up to 50 Hz. These results indicate that, first, the ellipticity peak at around 3 Hz
has to correspond to a singularity with retrograde particle motion below and prograde
particle motion above and, second, that there is a trough at around 4.5 Hz, where the
particle motion changes back to retrograde.
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Figure 12: Overview of the Love and Rayleigh wave dispersion curves as well as the ellipticity
and ellipticity angle curves for both arrays. The dashed lines indicate the theoretical resolution
limits of array 1 (high frequencies) and array 2 (low frequencies). The RayDec ellipticity curve
corresponds to station SBGN01, the closest station to the permanent station SBGN.
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4 Data inversion

4.1 Inversion targets

We performed inversions using the Love and Rayleigh wave dispersion curves together
with the Rayleigh wave ellipticity angle as inversion targets. For the dispersion curves,
the HRFK dispersion curves were used for both Love and Rayleigh waves. It was tested
if the Love wave dispersion curve of array 1 between 7 and 15 Hz might correspond to
the first higher mode, but it was impossible to fit it together with the Rayleigh wave
dispersion curve. Therefore, the Love wave dispersion curves were used as fundamental
mode. The part of the Love wave dispersion curve above 5.3 Hz from array 2 was
disregarded to allow a smooth transition between both parts of the dispersion curve. For
Rayleigh waves, the two dispersion curves determined on the vertical component by
HRFK were used.
For the ellipticity angle, a part of the RayDec curve below 2.1 Hz was used, assuming
retrograde particle motion, and a part of the RayDec curve above 3.2 Hz, assuming
prograde particle motion. In this way, the fundamental frequency of the site was not
completely fixed, but the presence of a singularity was forced. The RayDec data was
combined with parts of the WaveDec ellipticity angles for arrays 1 and 2.
The details of the inversion targets are indicated in Table 2 and the corresponding curves
are shown in Fig. 13.

Figure 13: Overview of the dispersion (top) and ellipticity angle (bottom) curves used as targets
for the different inversions.
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Table 2: List of the different data curves used as target in the different inversions.

Array Method Wave type Mode Curve type Frequency range [Hz]

2 HRFK (T) Love fundamental dispersion 2.96 - 5.26
1 HRFK (T) Love fundamental dispersion 7.54 - 51.4

2 HRFK (V) Rayleigh fundamental dispersion 3.65 - 5.26
1 HRFK (V) Rayleigh fundamental dispersion 6.46 - 44.0

RayDec (SBGN01) Rayleigh fundamental ellipticity angle (-) 1.43 - 2.07
RayDec (SBGN01) Rayleigh fundamental ellipticity angle (+) 3.29 - 3.47

2 WaveDec Rayleigh fundamental ellipticity angle 4.05 - 5.26
1 WaveDec Rayleigh fundamental ellipticity angle 6.80 - 20.3

4.2 Inversion parameterization

For the inversion, seven different parameterizations have been used in total. The first
six had free values of the depths and velocities of the different layers, ranging from four
to eight layers (including half-space). The last parameterization had fixed layer depths
and consisted of 20 layers in total. The main interface depths resulting from the 8-layer
inversion were used in the fixed-layer approach. The P-wave velocities were allowed to
vary up to 5000 m/s. The S-wave velocities were allowed to range from 50 to 3500 m/s.
The deepest layers were parameterized to range to a depth of 150 m maximum. The
density was fixed to 2 300 kg/m3 for the lowest layer, to 1 900 kg/m3 for the superficial
layer (or the first three layers in the fixed-layer case) and to 2 100 kg/m3 for all other
layers. No low-velocity zones were allowed.

20



4.3 Inversion results

We performed seven inversions with different parameterizations for the subsurface
model. For each parameterization, 20 different runs were performed, but only the one
giving the best minimum misfit was kept. In Table 3, the obtained minimum misfit values
for these inversions are shown. Each inversion run produced around 150 000 total models
in order to assure a good convergence of the solution, except for the 4-layer and 3-layer
inversions, where 100 000 and 50 000 generated models were sufficient, respectively. The
results of the inversions SBGN3l to SBGNfix are shown in Figs 14 - 20.
The different inversions with more than 4 layers yield similar misfit values and fit the
data in a comparable way. Especially the 3-layer inversion yields higher misfit values
than the other inversions. For the 4-layer case, it is slightly increased. Using the fixed-
depth approach, the minimum misfit was also higher, probably because the interface
depths were fixed at non-optimum depths.

Table 3: List of inversions

Inversion Number of layers Number of models Minimum misfit

SBGN3l 3 50 030 0.930
SBGN4l 4 100 028 0.823
SBGN5l 5 150 004 0.780
SBGN6l 6 150 044 0.743
SBGN7l 7 150 001 0.749
SBGN8l 8 150 029 0.751
SBGNfix 20 150 009 0.799
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Figure 14: Inversion SBGN3l. Top line: Dispersion curves for Love waves (left) and Rayleigh
waves (center) and Rayleigh wave ellipticity angle (right) of the respective fundamental modes.
The black dots indicate the data points used for the inversion, the gray line indicates the best-
fitting model. Bottom line: P-wave velocity profiles (left), S-wave velocity profiles (center and
zoom on the upper 30 m on the right). All generated models are plotted on top of each other in
the color corresponding to the respective misfit value.
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Figure 15: Inversion SBGN4l. Top line: Dispersion curves for Love waves (left) and Rayleigh
waves (center) and Rayleigh wave ellipticity angle (right) of the respective fundamental modes.
The black dots indicate the data points used for the inversion, the gray line indicates the best-
fitting model. Bottom line: P-wave velocity profiles (left), S-wave velocity profiles (center and
zoom on the upper 30 m on the right). All generated models are plotted on top of each other in
the color corresponding to the respective misfit value.
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Figure 16: Inversion SBGN5l. Top line: Dispersion curves for Love waves (left) and Rayleigh
waves (center) and Rayleigh wave ellipticity angle (right) of the respective fundamental modes.
The black dots indicate the data points used for the inversion, the gray line indicates the best-
fitting model. Bottom line: P-wave velocity profiles (left), S-wave velocity profiles (center and
zoom on the upper 30 m on the right). All generated models are plotted on top of each other in
the color corresponding to the respective misfit value.
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Figure 17: Inversion SBGN6l. Top line: Dispersion curves for Love waves (left) and Rayleigh
waves (center) and Rayleigh wave ellipticity angle (right) of the respective fundamental modes.
The black dots indicate the data points used for the inversion, the gray line indicates the best-
fitting model. Bottom line: P-wave velocity profiles (left), S-wave velocity profiles (center and
zoom on the upper 30 m on the right). All generated models are plotted on top of each other in
the color corresponding to the respective misfit value.

25



Figure 18: Inversion SBGN7l. Top line: Dispersion curves for Love waves (left) and Rayleigh
waves (center) and Rayleigh wave ellipticity angle (right) of the respective fundamental modes.
The black dots indicate the data points used for the inversion, the gray line indicates the best-
fitting model. Bottom line: P-wave velocity profiles (left), S-wave velocity profiles (center and
zoom on the upper 30 m on the right). All generated models are plotted on top of each other in
the color corresponding to the respective misfit value.
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Figure 19: Inversion SBGN8l. Top line: Dispersion curves for Love waves (left) and Rayleigh
waves (center) and Rayleigh wave ellipticity angle (right) of the respective fundamental modes.
The black dots indicate the data points used for the inversion, the gray line indicates the best-
fitting model. Bottom line: P-wave velocity profiles (left), S-wave velocity profiles (center and
zoom on the upper 30 m on the right). All generated models are plotted on top of each other in
the color corresponding to the respective misfit value.

27



Figure 20: Inversion SBGNfix. Top line: Dispersion curves for Love waves (left) and Rayleigh
waves (center) and Rayleigh wave ellipticity angle (right) of the respective fundamental modes.
The black dots indicate the data points used for the inversion, the gray line indicates the best-
fitting model. Bottom line: P-wave velocity profiles (left), S-wave velocity profiles (center and
zoom on the upper 30 m on the right). All generated models are plotted on top of each other in
the color corresponding to the respective misfit value.
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4.4 Overview of the inversion result

The best-fitting models of the inversions SBGN3l-SBGNfix are shown in Fig. 21. All
models show similar main features, even the three-layer case. The superficial layer with
a thickness of 2.5 to 3.0 m has a shear-wave velocity of about 280 m/s, followed by a
layer with a velocity of between 730 and 750 m/s down to about 77 to 80 m, where the
seismic bedrock with velocities of over 2000 m/s is found.
Inversions with more layers tend to smoothen the transitions between the different
formations.
All inversions except for the three-layer inversion were accepted as valid models for
the underground structure. The VS30 value for these inversions ranges from 606.9 to
646.1 m/s (average value 638.1 ± 15.4 m/s). This corresponds to soil class B in both EC8
and SIA261.

Figure 21: Overview of shear-wave velocity profiles of the best-fitting models of all inversions
(left) and a zoom on the shallow part (right).
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4.5 Site amplification

In Fig. 22, the theoretical amplification function for the best models resulting from the
six selected inversions is compared with the empirical amplification. The empirical
amplification for station SBGN is based on 47 events so far. The amplification for the
inversion models is in good agreement with the empirical amplification around the peak
frequency at around 2.5 Hz, even if the amplitudes are different. At higher frequencies,
the empirical amplification is relatively flat between 5 and 20 Hz. This might be a sign for
edge-generated surface waves that affect the site and are not included in the modeling of
vertically propagating S-waves.

Figure 22: Comparison between the modeled amplification for the final set of best models of
the different inversions (SBGN4l-SBGNfix; in gray to black, with standard deviation) and the
empirical amplification measured at station SBGN (red, with standard deviation). The vertical
light and dark grey bars correspond to the lowest frequency of the ellipticity and dispersion
curves, respectively.
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4.6 Quarter-wavelength representation

The quarter-wavelength velocity approach (Joyner et al., 1981) provides, for a given
frequency, the average velocity at a depth corresponding to 1/4 of the wavelength of
interest. It is useful to identify the frequency limits of the experimental data (the mini-
mum frequency of the dispersion curve used in the inversion is 2.96 Hz, the minimum
frequency used for the ellipticity inversion 1.43 Hz). The results using this proxy show
that the dispersion curves constrain the profiles down to only about 60 m, but down to
over 200 m using the ellipticity information (Fig. 23). Moreover, the quarter wavelength
impedance-contrast introduced by Poggi et al. (2012) is also displayed in the figure. It
corresponds to the ratio between two quarter-wavelength average velocities, respectively
from the top and the bottom part of the velocity profile, at a given frequency (Poggi et al.,
2012). This curve shows a strong contrast at the fundamental frequency of the site.

Figure 23: Quarter wavelength representation of the velocity profile for the best models of the
inversions (top: depth, center: velocity, bottom: inverse of the impedance contrast). The black
curves are constrained by the dispersion curves, the light grey curves are not constrained by the
data. The red square corresponds to VS30.
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5 Conclusion

We performed a passive array measurement with two arrays to characterize the soil
underneath station SBGN in Bergün/Bravuogn (GR), located on the transition zone
between alluvial deposits and moraine.
The dispersion curves for Love and Rayleigh waves could be measured over a wide
frequency range, from around 2.9 to 51.7 Hz for Love waves and from 3.6 to 41.5 Hz for
Rayleigh waves. The fundamental ellipticity peak frequency is around 3 Hz.
The joint inversion of Love and Rayleigh wave dispersion curves and the Rayleigh wave
ellipticity angle showed that the structure can be explained by models with interfaces at
around 2.5 m and 80 m depth. The latter value corresponds to H800. The VS30 of the best
models is about 638 m/s, corresponding to soil class B in both EC8 and SIA261.
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