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Summary

The free-field strong-motion station SAYF2 was built close to the old station SAYF next
to a transformer house in Ayent-Fortunau (VS). We performed a passive seismic array
measurement and an active experiment to characterize the soil underneath the station.
The measurements show a not very strong peak at around 2.15 Hz and additional peaks
between 5 and 10 Hz for some array stations. The array measurements were analyzed
with different techniques, namely 3-component high-resolution FK (HRFK), WaveDec
and Spatial Autocorrelation (SPAC), with compatible dispersion curves. The active
MASW Rayleigh wave dispersion curve complements the other curves at higher frequen-
cies. The dispersion curves for the fundamental modes of Love and Rayleigh waves
could be retrieved from around 7.7 to 39.5 Hz and 5.8 to 40.7 Hz, respectively, using the
passive experiment. The active experiment yields a Rayleigh wave dispersion curve
between 15.9 and 64.7 Hz.
The joint inversion of Love and Rayleigh wave dispersion curves and the Rayleigh wave
ellipticity angle showed that the structure can be explained by models with interfaces at
about 3.8 m, 18 m and 100 m depth, with the shear-wave velocity increasing from 230 m/s
to over 1000 m/s. The VS30 of the best models is about 476 m/s, corresponding to soil
class B in EC8 and C in SIA261.
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1 Introduction

In the framework of the second phase of the Swiss Strong Motion Network (SSMNet)
renewal project, a new station was planned in Ayent-Fortunau (VS), to replace the old
station SAYF, which was located in a transformer house.
The new station is a free-field station, located in a distance of about 7 m outside of the
transformer house. It is called SAYF2 and went operational on 29 April 2015. The location
of the station is shown in Fig. 1.

Figure 1: Map showing the location of station SAYF2 in Ayent-Fortunau. Other stations in the
area are indicated as well. c©2020 swisstopo (JD100042)
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2 Geological setting

A geological map of the surroundings of station SAYF2 is shown in Fig. 2. The station is
located in a small bed of fine-grained scree. Further north, marl is found, and to the south,
moraine deposits are predominant. Most stations of the passive array measurement were
located on the scree, but some were located on moraine.

Figure 2: Geological map of the area around station SAYF2 (white triangle) with the different
stations of the array measurement (orange triangles). According to the geological atlas, station
SAYF2 and most stations of the passive array measurement lie on fine-grained scree, some stations
to the south lie on moraine. c©2020 swisstopo (JD100042)
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3 Site characterization measurements

3.1 Data set

In order to characterize the local underground structure around station SAYF2, a passive
seismic array measurement was carried out on 1 July 2015. The layout of the seismic
measurements is shown in Fig. 3.
A single passive array measurement was performed. The array consisted of 15 stations
arranged in a central circle of five stations with a radius of about 5 m around a central
station, with the other nine sensors located more irregularly in the surroundings. The
minimum and maximum inter-station distances were 4.9 m and 123.2 m, respectively.
The names of the stations of the array are composed of "SAYF2" followed by a two-digit
number (01 to 04, 06 to 12, 22, 24, 28, 32). The seismic stations consisted of Lennartz 3C
5 s sensors connected to Quanterra digitizers. A total of 11 digitizers were used. Eleven
sensors were connected to the A channels of the digitizers and another four sensors were
connected to B channels. The total recording time was 80 minutes.
In addition to the passive measurement, an active measurement using 24 geophones
was performed. The geophones were located with 1.0 m spacings along a line. Seismic
signals were generated by hammering with a sledgehammer ten times at each of six
different shot locations. The shot locations were 1.8 m, 5.0 m and 10.0 m to the west
of the westernmost geophone of the line and 1.0 m, 5.0 m and 10.0 m to the east of the
easternmost geophone.
The station locations have been measured by a differential GPS system (Leica Viva GS10)
which was set up to measure with a precision better than 5 cm. This precision was
achieved for all stations except SAYF01, were the precision was 7.9 cm.

Figure 3: Layout of the array measurements around station SAYF2. The location of SAYF2 is
indicated by the white triangle, the locations of the stations for the passive seismic measurement
by the orange triangles. The yellow triangles indicate the geophone locations of the passive
measurement. The red stars show the shot locations. c©2020 swisstopo (JD100042)
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3.2 H/V and RayDec ellipticity curves

Figure 4 shows the H/V curves determined with the time-frequency analysis method
(Fäh et al., 2009) for all stations of the passive array. All curves are rather similar. They
show two low-frequency peaks at around 0.3 and 0.7 Hz, which are not very pronounced.
Another peak is found just above 2 Hz. At higher frequencies, the different curves have
more variability and show another peak between 5.4 and 7.9 Hz.
The RayDec technique (Hobiger et al., 2009) is supposed to eliminate the contributions
of other wave types than Rayleigh waves and give a better estimate of the ellipticity
than the classical H/V technique. The RayDec ellipticity curves for all stations of the
array measurement are shown in Fig. 4 and are similar to the H/V curves. However, the
peak at 0.3 Hz is more pronounced. Station SAYF04, the closest station to the permanent
station SAYF2, serves as a reference and will be used for the inversion. It shows a low
peak at 2.15 Hz, but no very pronounced peak at higher frequencies.

Figure 4: Left: Overview of the H/V measurements for the different stations of the array mea-
surements. Right: RayDec ellipticities for all measurement stations. The red curve corresponds to
SAYF04, the station closest to the permanent station SAYF2.
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3.3 Polarization measurements

The polarization analysis was performed according to Burjánek et al. (2010) and Burjánek
et al. (2012). The results for all stations of the array are similar. Only the results for
SAYF040 are shown here.
There is no preferential linear particle polarization visible and we do not see indications
for 2-dimensional polarization effects. At 6 Hz, there is a preferential strike direction
along the topographic gradient. We interpret this frequency therefore as the eigenvibra-
tions of the scree layer.

Figure 5: Polarization analysis of station SAYF04.

3.4 3-component high-resolution FK

The results of the 3-component high-resolution FK analysis (Poggi and Fäh, 2010) are
shown in Fig. 6. On the transverse component, corresponding to Love waves, we
can identify a dispersion curve between 7.7 and 38.4 Hz. However, the uncertainty is
relatively large.
On the vertical component, corresponding to Rayleigh waves, we can identify one mode
between 7.7 and 40.7 Hz, spanning the complete accessible frequency range. On the
radial component, also related with Rayleigh waves, we can see the dispersion curve
between 8.2 and 34.1 Hz.
The corresponding ellipticity curves of these modes are relatively flat.
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Figure 6: Dispersion and ellipticity curves obtained with the 3-component HRFK algorithm
(Poggi and Fäh, 2010). In the left column, the dispersion curves for the transverse, vertical and
radial components are shown, and in the right column the ellipticity curves corresponding to the
dispersion curves picked on the vertical and radial components. The dashed and dotted black
lines are the array resolution limits. The solid green lines are picked from the data, where the
central line indicates the best values and the two outer lines the standard deviation.
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3.5 WaveDec

The results of the WaveDec (Maranò et al., 2012) processing are shown in Fig. 7. This
technique estimates the properties of single or multiple waves simultaneously with a
maximum likelihood approach. In order to improve the results, the parameter γ, which
modifies the sharpness of the wave property estimation, has been tuned. Here, a value
of γ = 0.2 was used, corresponding to a predominantly maximum likelihood estimation.
For Love waves, two dispersion curve branches are visible. The first one was picked
between 7.7 and 16.4 Hz, the second one between 12.4 and 39.5 Hz.
For Rayleigh waves, a single dispersion curve is retrieved between 7.7 and 34.5 Hz. The
ellipticity angle for the picked Rayleigh wave dispersion curve is negative over the whole
frequency range.

Figure 7: Top: Love (left) and Rayleigh (right) wave dispersion curves obtained with the WaveDec
technique (Maranò et al., 2012). The dashed lines indicate the theoretical array resolution limits.
Bottom: Rayleigh wave ellipticity angle curve for the picked dispersion curve (left) and Rayleigh
wave ellipticity curve (right), i.e. the absolute value of the tangent of the ellipticity angle.
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3.6 SPAC

The SPAC (Aki, 1957) curves of the vertical components have been calculated using the
M-SPAC (Bettig et al., 2001) technique implemented in geopsy (Wathelet et al., 2005).
Rings with different radius ranges had been defined previously and for all station pairs
with distance inside this radius range, the cross-correlation was calculated over a wide
frequency range. These cross-correlation curves are averaged for all station pairs of the
respective ring and give the SPAC curves. The rings are defined in such a way that at
least three station pairs contribute and their connecting vectors have a good directional
coverage.
The SPAC curves for all defined rings are shown in Fig. 8. The black points indicate the
data values which contributed to the final dispersion curve estimation, which was made
with the function spac2disp of the geopsy package.
Using SPAC, we can retrieve a Rayleigh wave dispersion curve between 5.8 and 20.4 Hz.

Figure 8: Left: SPAC curves for the different distance ranges. The black data points contributed
to the dispersion curve estimation. Right: Resulting Rayleigh wave velocities. The black line
corresponds to the picked dispersion curve.
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3.7 Active measurement

The active hammering experiment was analyzed using the active FK technique imple-
mented in geopsy (Wathelet et al., 2005). First, the signals of the different hammer shots
at each shot point were stacked and analyzed, using only the vertical component signals.
Then, the outputs of the six shot points where stacked (see Fig. 9) and a dispersion curve
picked. The resulting curve ranges from 15.9 to 64.7 Hz.

Figure 9: Result of the active measurement analysis of the vertical component of the geophones.
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3.8 Summary

Fig. 10 gives an overview of the dispersion and ellipticity curves determined by the
different methods.
For Love waves, HRFK gives a single continuous dispersion curve, while WaveDec
finds two dispersion curves with unclear mode attribution. The second picked mode
is actually in good agreement with the HRFK result, while the first WaveDec mode is
slower than the HRFK results.
For Rayleigh waves, the different methods are in better agreement. The HRFK curve
for the vertical component is in very good agreement with the WaveDec curve. Both fit
also well with the SPAC curve, which actually reaches deeper frequencies. The radial
HRFK curve is only in agreement with these curves below 12 Hz and deviates to higher
velocities above and might correspond to a different mode there. The active curve
corresponds well with the other curves and reaches higher frequencies.
The ellipticity curves retrieved using the different methods are in partial agreement. The
vertical HRFK curve is in better agreement with the RayDec curve than the radial curve,
supporting the hypothesis that the radial HRFK curve corresponds to a different mode.
The WaveDec curve partially agrees with the RayDec curve. At 6 Hz, it shows a peak
which is not visible in the RayDec curve for SAYF04. As other stations showed peaks
around this frequency (Fig. 4), it might be that WaveDec as an array method is more
influenced by those stations. In any case, the particle motion of the WaveDec curve is
retrograde in the whole frequency range, indicating that there is no singularity in the
ellipticity curve in the frequency range covered by WaveDec.

Figure 10: Overview of the Love and Rayleigh wave dispersion curves as well as the ellipticity
and ellipticity angle curves for both arrays. The dashed lines indicate the theoretical resolution
limits of the array. The RayDec ellipticity curve corresponds to station SAYF244.
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4 Data inversion

4.1 Inversion targets

The curve picked for HRFK on the transverse component was assumed as the funda-
mental mode Love wave dispersion curve. For the Rayleigh wave dispersion curve, the
picked HRFK curve for the vertical component was mainly used, adding some parts of
the SPAC dispersion curve at low frequencies and of the active measurement curve at
higher frequencies. As both the SPAC and the active curves were picked without error
bars, reasonable uncertainties similar to the HRFK curve were assumed.
The RayDec curve was used as ellipticity angle information, assuming retrograde particle
motion over the whole frequency range. The details of the inversion targets are indicated
in Table 1 and the corresponding curves are shown in Fig. 11.

4.2 Inversion parameterization

Six different parameterizations have been used in total. The first five had free values
of the depths and velocities of the different layers, ranging from four to eight layers
(including the half-space). The last parameterization had fixed layer depths and con-
sisted of 19 layers in total. The main interface depths resulting from the 8-layer inversion
were used in the fixed-layer approach. The P-wave velocities were allowed to vary up to
5000 m/s. The S-wave velocities were allowed to range from 30 to 3500 m/s. The deepest
layers were parameterized to reach a depth of 150 m maximum. The density was fixed to
2 300 kg/m3 for the lowest layer, to 1 900 kg/m3 for the superficial layer (or the first three
layers in the fixed-layer case) and to 2 100 kg/m3 for all other layers. No low-velocity
zones were allowed.
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Figure 11: Overview of the dispersion (top) and ellipticity angle (bottom) curves used as targets
for the different inversions.

Table 1: List of the different data curves used as target in the different inversions. For target 1, all
listed curves where used. For target 2, the Love wave dispersion curve was not used.

Method Wave type Mode Curve type Frequency range [Hz]

HRFK (T) Love fundamental dispersion 8.20 - 37.4

SPAC Rayleigh fundamental dispersion 6.13 - 7.31
HRFK (V) Rayleigh fundamental dispersion 8.20 - 23.5

Active Rayleigh fundamental dispersion 26.3 - 42.0

RayDec (SAYF04) Rayleigh fundamental ellipticity angle 1.80 - 37.4
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4.3 Inversion results

We performed six inversions with different parameterizations. In Table 2, the obtained
minimum misfit values for these inversions are shown. Each inversion run produced
between 100 000 and 200 000 total models in order to assure a good convergence of the
solution. For the 4-layer inversion, 100 000 generated models were sufficient, for the
5-layer inversion, 150 000. For all other parameterizations, around 200 000 models were
generated. The results of the inversions SAYF4l to SAYFfix are shown in Figs 12 - 17
The different inversions for the respective targets yield similar misfit values and fit the
data in a comparable way. The part of the Rayleigh wave dispersion curve coming from
SPAC is not fitted, indicating that this part might either be badly estimated or correspond
to a higher mode.

Table 2: List of inversions

Inversion Number of layers Number of models Minimum misfit

SAYF4l 4 100 026 0.644
SAYF5l 5 150 011 0.630
SAYF6l 6 200 030 0.609
SAYF7l 7 199 997 0.609
SAYF8l 8 200 005 0.610
SAYFfix 20 200 048 0.617
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Figure 12: Inversion SAYF4l. Top line: Dispersion curves for Love waves (left) and Rayleigh
waves (center) and Rayleigh wave ellipticity curves (right) of the respective fundamental modes.
Bottom line: P-wave velocity profiles (left), S-wave velocity profiles (center and zoom on the
right). The black dots indicate the data points used for the inversion, the gray line indicates the
best-fitting model.
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Figure 13: Inversion SAYF5l. Top line: Dispersion curves for Love waves (left) and Rayleigh
waves (center) and Rayleigh wave ellipticity curves (right) of the respective fundamental modes.
Bottom line: P-wave velocity profiles (left), S-wave velocity profiles (center and zoom on the
right). The black dots indicate the data points used for the inversion, the gray line indicates the
best-fitting model.
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Figure 14: Inversion SAYF6l. Top line: Dispersion curves for Love waves (left) and Rayleigh
waves (center) and Rayleigh wave ellipticity curves (right) of the respective fundamental modes.
Bottom line: P-wave velocity profiles (left), S-wave velocity profiles (center and zoom on the
right). The black dots indicate the data points used for the inversion, the gray line indicates the
best-fitting model.
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Figure 15: Inversion SAYF7l. Top line: Dispersion curves for Love waves (left) and Rayleigh
waves (center) and Rayleigh wave ellipticity curves (right) of the respective fundamental modes.
Bottom line: P-wave velocity profiles (left), S-wave velocity profiles (center and zoom on the
right). The black dots indicate the data points used for the inversion, the gray line indicates the
best-fitting model.
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Figure 16: Inversion SAYF8l. Top line: Dispersion curves for Love waves (left) and Rayleigh
waves (center) and Rayleigh wave ellipticity curves (right) of the respective fundamental modes.
Bottom line: P-wave velocity profiles (left), S-wave velocity profiles (center and zoom on the
right). The black dots indicate the data points used for the inversion, the gray line indicates the
best-fitting model.
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Figure 17: Inversion SAYFfix. Top line: Dispersion curves for Love waves (left) and Rayleigh
waves (center) and Rayleigh wave ellipticity curves (right) of the respective fundamental modes.
Bottom line: P-wave velocity profiles (left), S-wave velocity profiles (center and zoom on the
right). The black dots indicate the data points used for the inversion, the gray line indicates the
best-fitting model.
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4.4 Overview of the inversion result

The S-wave velocity profiles of the best-fitting models of all inversions are shown in
Fig. 18. The models of the respective targets show very similar main features and the
larger flexibility of the models with more layers is hardly visible. A superficial layer with
an S-wave velocity of around 230 m/s and thickness of 3.8 m is identified. Below, the
velocity increases to around 455 m/s down to a depth of between 17.8 and 18.6 m. At
this depth, the velocity increases to a value between 774 and 815 m/s. The next-deepest
strong velocity contrast occurs between 90 m and 103 m of depth for the different models.
The VS30 values for the inversions range from 472.1 to 479.9 m/s (average value 476.2 ±
2.5 m/s). This corresponds to soil class B in EC8 and C in SIA261.
The depth at which the shear-wave velocity gets higher than 800 m/s varies between
18.6 m (these models actually correspond to soil class E in both EC8 and SIA261) and
103 m for the different models.

Figure 18: Overview of shear-wave velocity profiles of the best-fitting models of all inversions
(left) and a zoom on the shallow part for the inversions using target 1 (center) and target 2 (right).
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4.5 Amplification function

In Fig. 19, the theoretical amplification function for the best models resulting from the
inversions is compared with the empirical amplification of station SAYF2, based on 116
events so far. The empirical amplification has values around 1 below 4 Hz and shows a
first peak between 7 and 11 Hz, followed by a trough at 12.6 Hz and several small peaks
above.
The modeled amplification for the models of the inversion shows an overall larger level
of amplification with a first smooth peak around 2 Hz. Other peaks are found at 5.6 Hz
and 8.0 Hz. A strong amplification peak occurs at 15.5 Hz. The different peak and trough
frequencies are actually in rather good agreement with the empirical amplification, but
the amplitudes differ.

Figure 19: Comparison between the modeled amplification for the final set of best models of the
different inversions (in grey to black, with standard deviation) and the empirical amplification
measured at station SAYF2 (red, with standard deviation). The vertical light and dark grey bars
correspond to the lowest frequency of the ellipticity and dispersion curves used for the inversion,
respectively.
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4.6 Quarter-wavelength representation

The quarter-wavelength velocity approach (Joyner et al., 1981) provides, for a given
frequency, the average velocity at a depth corresponding to 1/4 of the wavelength of
interest. It is useful to identify the frequency limits of the experimental data (the mini-
mum frequency of the dispersion curve used in the inversion is 6.13 Hz, the minimum
frequency used for the ellipticity inversion 1.80 Hz). The results using this proxy show
that the dispersion curves constrain the profiles down to about 14.9 m and the ellip-
ticity information down to about 94.8 m (Fig. 20). Moreover, the quarter wavelength
impedance-contrast introduced by Poggi et al. (2012) is also displayed in the figure. It
corresponds to the ratio between two quarter-wavelength average velocities, respectively
from the top and the bottom part of the velocity profile, at a given frequency (Poggi et al.,
2012). This curve shows several peaks at around 2 Hz, 5 Hz and 15 Hz.

Figure 20: Quarter wavelength representation of the velocity profile for the best models of the
inversions (top: depth, center: velocity, bottom: inverse of the impedance contrast) for the
resulting models. The black curves are constrained by the dispersion curves, the light grey curves
are not constrained by the data. The red square corresponds to VS30.
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5 Conclusion

We performed a passive array measurement and an active measurement to characterize
the soil underneath station SAYF2 in Ayent-Fortunau (VS). According to the geological
atlas, the station is located on fine-grained scree, but marl and moraine are close-by.
Using the passive experiment, the dispersion curves for Love and Rayleigh waves could
be measured over a wide frequency range, from around 7.7 to 39.5 Hz for Love waves
and from 5.8 to 40.7 Hz for Rayleigh waves. Using the active measurement, the Rayleigh
wave dispersion curve can be identified between 15.9 and 64.7 Hz. In the H/V and
ellipticity curves, a not very strong peak is found around 2.15 Hz and some stations show
additional peaks between 5 and 10 Hz. The WaveDec result shows retrograde particle
motion in the complete covered frequency range.
A joint inversion of the different measured curves, i.e. the Love and Rayleigh wave
dispersion curves and the Rayleigh wave ellipticity angle, fits the data in a good way.
The resulting models show a structure with a superficial layer of around 3.8 m thickness
with a shear-wave velocity of around 230 m/s. The next layer has a velocity of about
455 m/s and reaches down to about 18 m, where the velocity increases to values of
around 800 m/s. Another strong velocity contrast is found between 90 and 103 m. The
VS30 for the best models is about 476 m/s, corresponding to soil class B in EC8 and C in
SIA261, but some models of the inversion actually correspond to class E in both EC8 and
SIA261.
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