swiss*nuclear*: PEGASOS Refinement Project: SP2 – Ground Motion Characterization

Contract no. PMT-VT-1032

# Seismic Shear Wave Velocity Determination and Hybrid Seismic Survey at the SED-Station WIMIS (Wimmis, BE)

Date of Field Data Acquisition 24th April 2009

# Report

### Client

swissnuclear Project PRP Frohburgstrasse 17 4601 Olten

### Contractor

**GeoExpert ag** Seismic Prospecting Ifangstrasse 12b P.O. Box 451 8603 Schwerzenbach

8603 Schwerzenbach, 9th July 2009

# INDEX

| 1 INTRODUCTION                                                                          | 3        |
|-----------------------------------------------------------------------------------------|----------|
| 1.1 Survey objectives                                                                   | 3        |
| 1.2 The choice of the appropriate surveying methods                                     | 3        |
| 2 FIELD DATA ACQUISITION PARTICULARS                                                    | 4        |
| 2 1 Time Schedule                                                                       | 4        |
| 2.2 Summary of Data Acquisition Parameters                                              | 4        |
| 2.3 Composition of Seismic Field Crew.                                                  | 5        |
| 2.4 Location                                                                            | 5        |
| 2.5 Recording Conditions and Line Setup                                                 | 6        |
| 2.6 Seismic Wave Generation                                                             | 6        |
| 3 SEISMIC DATA PROCESSING AND IMAGING OF THE RESULTS                                    | 7        |
| 3.1 General Remarks                                                                     | 7        |
| 3.2 Shear Wave Refraction Tomography                                                    | 7        |
| 3.2.1 Reformatting and field geometry assignment                                        | 7        |
| 3.2.2 First break time picking                                                          | 7        |
| 3.2.3 Analytical Determination of Refraction Velocities                                 | 8        |
| 3.2.4 Tomographic inversion of the velocity gradient field by iterative modeling        | 9        |
| 3.3 MASW Processing                                                                     | 12       |
| 3.3.1 Reformatting and field geometry assignment                                        | 12       |
| 3.3.2 Calculating the dispersion image (overtone)                                       | 12       |
| 3.3.3 Analysis of the dispersion image                                                  | 12       |
| 3.3.4 Inversion of dispersion curves resulting in a 1D shear wave velocity distribution | 15       |
| 3.3.5 Gridding and plotting of 2D vs-velocity field                                     | 18       |
| 3.3.6 Calculation of the average shear wave velocity                                    | 19       |
| 3.3.7 Calculation of the shear wave velocity scalars vs,5, vs,10,                       | 21       |
| 3.4 Hybrid Seismic Data Processing.                                                     | 22       |
| 3.4.1 p-wave Reflection Seismic Processing Sequence                                     | 22<br>20 |
| 3.4.2 The presentation of reflection seismic data                                       | 22<br>23 |
|                                                                                         | 20       |
| 4 DISCUSSION OF THE RESULTS                                                             | 28       |
| 4.1 Summary and Validation of the Results                                               | 28       |
| 4.2 Validation of the methods and their results                                         | 28       |
| 4.3 Error Estimates                                                                     | 29       |
| 5 SUMMARY AND CONCLUSIONS                                                               | 30       |



### 1 INTRODUCTION

### 1.1 Survey objectives

The seismic survey's main task is to provide information about the distribution function of the shear wave velocities in the depth interval of the uppermost 30 m along a 100 m long seismic profile.

Additionally, the following objectives are to be met:

- the mapping of the topography of the rock face, i.e. the thickness of the Quaternary deposits;
- the determination of the thickness of the weathered zone and its degree of decompaction at the bedrock surface;
- a general view of geological structures.

### 1.2 The choice of the appropriate surveying methods

Several methods are available for deriving the s-wave velocity distribution in the subsurface at any given position:

- in-situ measurement by down-hole or crosshole seismic surveying;
- shear-wave refraction tomography profiling;
- dispersion analysis of surface waves (MASW; Multiple channel Analysis of Surface Waves)

The surveys are to be carried out at, or as close as possible near some 20 SED earth quake monitoring stations in Switzerland. Ideally, the surveys are to be conducted on two orthogonal profiles in order to derive at their point of intersection a robust 1D s-wave velocity distribution function by correlation. To this end, the methods of MASW and shear-wave refraction tomography profiling are to be combined.

The results are to include the following fundamental parameters  $v_{s,5}$ ,  $v_{s,10}$ ,  $v_{s,20}$ ,  $v_{s,30}$ ,  $v_{s,40}$ ,  $v_{s,50}$ ,  $v_{s,100}$  are to be calculated, also an error estimation of all values.

The data acquired for the MASW method are to be subjected to complementary **p-wave hybrid seismic data processing** in order to image the geological structures.



#### 2 FIELD DATA ACQUISITION PARTICULARS

#### 2.1 Time Schedule

| <i>Date</i><br>23.04.2009 | <i>Time</i><br>1535<br>1535 - 1630<br>1630                       | Activities / remarks<br>arrival at site<br>site reconnaissance and discussion with SED about array layouts<br>leaving from site                                                                                                                |
|---------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 24.04.2009                | 0800<br>0800 - 0815<br>0815 - 0915<br>0915 - 1015<br>1015 - 1200 | arrival at site<br>site reconnaissance<br>lay-out of spread profile 1 (p-wave and s-wave)<br>data acquisition of spread profile 1 (p-wave)<br>data acquisition of spread profile 1 (s-wave)<br>lay-out of spread profile 2 (p-wave and s-wave) |
|                           | 1310 - 1440<br>1440 - 1500<br>1500 - 1715                        | data acquisition of spread profile 2 (p-wave)<br>data acquisition of spread profile 2 (s-wave)<br>removal of the seismic measuring system<br>departure from site                                                                               |

#### **Summary of Data Acquisition Parameters** 2.2

### **Compressional Wave Data Acquisition**

| # of active channels     | 96                                                          |
|--------------------------|-------------------------------------------------------------|
| geophone type            | 4.5 Hz natural frequency, vertical velocimeter              |
| receiver station spacing | 1.0 m                                                       |
| # of geophones/station   | 1                                                           |
| source point spacing     | 2.0 m to 3.0 m                                              |
| source type              | vertical hammer (8 kg) striking on a horizontal metal plate |
| sampling rate            | 500 μs                                                      |
| recording time           | 2048 ms                                                     |
| field filters            | 0.5 Hz LC, anti-alias                                       |
| # of field records       | 27 (line 09SN_20WIMIS-P1) and 27 (line 09SN_20WIMIS-P2)     |
|                          |                                                             |

#### Shear Wave Data Acquisition <u>18</u>

| onour mare Bata nogu     |                                                                                                                                      |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| # of active channels     | 48                                                                                                                                   |
| geophone type            | 10 Hz natural frequency, horizontal velocimeter                                                                                      |
| receiver station spacing | 2.0 m                                                                                                                                |
| # of geophones/station   | 1                                                                                                                                    |
| source point spacing     | 4.0 m to 6.0 m                                                                                                                       |
| source type              | horizontal hammer (8 kg) striking horizontally at a metal-plated wooden<br>beam anchored to the ground by means of 20 cm long spikes |
| sampling rate            | 500 μs                                                                                                                               |
| recording time           | 512 ms                                                                                                                               |
| field filters            | 2 Hz LC, anti-alias                                                                                                                  |
| # of field records       | 30 (line 09SN_20WIMIS-S1) and 45 (line 09SN_20WIMIS-S2)                                                                              |
|                          |                                                                                                                                      |



Fig. 2.1: S-wave data acquisition at profile 09SN\_20WIMIS-S2 with a small motorized wheel barrow to transport the shear wave generator to  $\overline{the}$  site in difficult areas.



### 2.3 Composition of Seismic Field Crew

#### Personnel

Lorenz Kellerdipl.-Natw. ETH, geophysicist, party chiefDieter Martindipl.-Geol., University of Freiburg i. Br., geologist, party chiefJochen Fiselidipl.-Geol., University of Freiburg i. Br., geologist, spread lay-out and activation<br/>of seismic source

#### Equipment

- 96 vertical geophones 4.5 Hz
- 48 horizontal geophones 12 Hz
- 6 seismic cables
- 1 seismic acquisition system Summit Compact, 96 channels
- 1 laptop computer for data acquisition
- 3 walkie-talkies
- 1 hammer 8 kg
- 1 steel plate
- 1 metal-plated wooden beam
- 1 van (FIAT Ducato 4x4)

### 2.4 Location

The seismic monitoring station WIMIS (Wimmis, BE, Swiss prealps) is situated in a massive formation of Jurassic limestones (Malmkalk), encircled by a complex geological setting with Quaternary deposits.



Fig. 2.2: The red cross marked seismic monitoring station WIMIS (Wimmis, BE) is located in Jurassic sediments (Malmkalk). (map: geodata @ swisstopo).



### 2.5 Recording Conditions and Line Setup

Warm temperatures prevailed throughout the field data recording period.

In general, the data quality obtained at WIMIS is to be rated as fair.

Due to the difficulties in acquisition geometry, it was decided on site to lay out the arrays along two different areas where the limestone cliff dips vertical into the Quaternary deposits. Measurements above the cliff (Burgstock) were impracticable because of logistical matters and on the Quaternary deposits (Burgmatte/Spissiweid) wouldn't be able to allow velocity determination of the bedrock. So, one profile was positioned directly along the entrance to the military bunker, the second one 350 m to the West.

### 2.6 Seismic Wave Generation

Due to the geological setting – vertical separated limestone and soft rock – and the impossibility to generate shear waves on the hard rock with the shear wave beam, we decided in agreement with the SED to generate both compressional and shear waves directly by hitting the hard rock in the respective directions.



Fig. 2.3: Situation map with the trace of seismic profile 09SN\_20WIMIS-1 and -2. (background map: © Amt für Geoinformation des Kantons Bern und SWISSIMAGE © swisstopo (DV043667.1))



## **3** SEISMIC DATA PROCESSING AND IMAGING OF THE RESULTS

### 3.1 General Remarks

- For the shear and compressional wave refraction seismic evaluation the package **RAYFRACT** by Intelligent Resources Ltd., Vancouver CAN, was used. The system features the technique of diving wave tomography (www.rayfract.com).
- The system **SPW** (**S**eismic **P**rocessing **W**orkshop) of Parallel Geoscience Corporation, Austin US-TX, was used for reflection seismic data processing (www.parallelgeo.com).
- Data processing of surface waves (MASW processing) was conducted with the software package **SurfSeis** V2.0 of Kansas Geological Survey in Lawrence US-KS.

A detailed description of the various surveying methods will be included in the general summary report.

### 3.2 Shear Wave Refraction Tomography

### 3.2.1 Reformatting and field geometry assignment

After reformatting the field data into the Rayfract format the field geometry is applied.

#### 3.2.2 First break time picking

At each shot position, two seismic records were acquired in both activation directions. These two records are displayed superimposed with different colors on each other in Fig 3.2a together with the manually determined first arrival time picks.



*Fig. 3.2a:* Record of line 09SN\_20WIMIS-S1 (top) and -S2 (bottom) showing at each station the s-wave traces. The manually picked s-wave refraction arrivals at each station are marked with an red square. The station spacing is 1.5 m.



swiss*nuclear* – PRP / SP2: seismic shear wave velocity determination



Fig. 3.2b: Curves of s-wave first break time picks of line 09SN\_20WIMIS-S1 (left) and -S2 (right). Station number 101 = profile meter 0; station number 148 = profile meter 72. Station spacing is 1.5 m.

#### 3.2.3 Analytical Determination of Refraction Velocities

An initial 1D-velocity function (averaged 1D velocity-depth profiles derived by the Delta-t-V method, see Tab. 3.2a) is determined in the 3-dimensional time-offset-CMP-domain of all first break arrival time curves in the 3-dimensional time-offset-CMP-domain (see. Fig. 3.2c).

| Depth [m] | Vs [m/s] | Depth [m] | Vs [m/s] |
|-----------|----------|-----------|----------|
| 0.0       | 792      | 0.0       | 319      |
| 0.3       | 864      | 0.4       | 597      |
| 0.5       | 951      | 0.7       | 715      |
| 0.9       | 1090     | 1.1       | 853      |
| 1.3       | 1193     | 1.6       | 953      |
| 2.0       | 1350     | 2.5       | 1083     |
| 2.8       | 1496     | 3.6       | 1243     |
| 4.0       | 1564     | 5.2       | 1521     |
| 5.5       | 1658     | 7.4       | 1815     |
| 7.6       | 1754     | 10.6      | 1792     |
| 10.3      | 1696     | 15.0      | 1770     |
| 14.1      | 1746     | 21.1      | 2746     |
| 19.2      | 1903     | 29.8      | 4882     |
| 26.0      | 2581     |           |          |

Tab. 3.2a: Initial 1D s-wave velocity function derived from real data of line 09SN\_20WIMIS-S1 (horizontal mean values) and of line -S2 (horizontal mean values).





Fig. 3.2c: 3-dimensional distance-travel time diagrams of line 09SN\_20WIMIS-S1 (left) and 09SN\_20WIMIS-S2 (right) at the mid-points between source points and receiver stations are instrumental when using the analytical CMP derivation of the initial velocity field. The horizontal axes are the along the CMP positions and the travel time respectively, the vertical axis denotes the offset distance between source and receiver positions. The colors represent different velocity layers. The station spacing is 2 m, profile station number 00 = profile meter 0; profile station number 48 = profile meter 96. The colors represent different velocity layers.

#### 3.2.4 Tomographic inversion of the velocity gradient field by iterative modeling

The velocity field is iteratively refined by the subsequent Wavepath Eikonal Traveltime (WET) tomographic inversion process. The inversion results are portrayed in Fig. 3.2d as a gridded velocity contour section and in Fig. 3.2e as a ray path density section.



Fig. 3.2d: Shear wave velocity field of the line 09SN\_20WIMIS-S1. Red/white colors denote solid rock, blue/black colors point to unconsolidated sediments and soil. Vertical axis: elevation [m a.s.l]; horizontal axis: profile meter; color encoded scale: vs [m/s]; no vertical exaggeration; gray diamonds: receiver positions; red triangles: source positions; magenta crosses: positions of determined velocity values. The station spacing is 2 m, profile meter 0 = profile station number 00, profile meter 96 = profile station number 48.

GeoExpert ag





22. Shear wave velocity held of the line 093N\_20WhMS-32. Red/While colors denote solid rock, blue/black colors point to unconsolidated sediments and soil. Vertical axis: elevation [m a.s.l]; horizontal axis: profile meter; color encoded scale: v<sub>s</sub> [m/s]; no vertical exaggeration; gray diamonds: receiver positions; red triangles: source positions; magenta crosses: positions of determined velocity values. The station spacing is 1.5 m, profile meter 0 = profile station number 101, profile meter 72 = profile station number 148.





Fig. 3.2f: Shear wave ray path density along the seismic line 09SN\_20WIMIS-S1 (top) and -S2 (bottom). Red/white colors indicate high velocity contrasts (usually at the bedrock surface), blue/black colors denote low coverage areas. Vertical axis: elevation [m a.s.l]; horizontal axis: profile meter; color encoded scale: ray paths per m<sup>2</sup>; no vertical exaggeration. The station spacing is 1.5 m, profile meter 0 = profile station number 101, profile meter 72 = profile station number 148.



| Depth [m] | Vs [m/s] | 0            |
|-----------|----------|--------------|
| 0.0       | 695      |              |
| 0.8       | 1050     |              |
| 1.6       | 1286     | 5            |
| 2.4       | 1373     | /1           |
| 3.2       | 1349     | 10           |
| 4.0       | 1380     |              |
| 4.8       | 1496     |              |
| 5.6       | 1548     | <b>E</b> 15  |
| 6.4       | 1570     |              |
| 7.2       | 1498     |              |
| 8.0       | 1487     | 20           |
| 8.8       | 1485     |              |
| 9.6       | 1438     |              |
| 10.4      | 1427     |              |
| 11.2      | 1504     | Vs (initial) |
| 12.0      | 1768     | 30           |
| 12.8      | 1878     |              |
|           |          | Vs [m/s]     |

Tab. 3.2b: Final 1D s-wave velocity model derived from real data of line 09SN\_20WIMIS-S1 (horizontal average of all values). The calculated values of the initial 1D s-wave velocity model are given in Tab. 3.2a.



Tab. 3.2c: Final 1D s-wave velocity model derived from real data of line 09SN\_20WIMIS-S2 (horizontal average of all values). The calculated values of the initial 1D s-wave velocity model are given in Tab. 3.2a.



### 3.3 MASW Processing

#### 3.3.1 Reformatting and field geometry assignment

The data preparation steps for the dispersion analysis include

- the assignment of the field acquisition geometry
- the selection of suitable offset ranges (=arrays) between 10 m and 50 m for dispersion, and the splitting of the field records in forward and reverse shooting direction data sets
- the reformatting of the data into the specific KGS format

X - - ... - - o-o-o-o (forward shooting or so-called PLUS direction)

respectively

o-o-o-...-o-o-o - - ... - - X (reverse shooting or so-called MINUS direction).

where **X** = shot position

o = receiver station

- = 1.0 m offset

The active array used at SED-station WIMIS are the receiver station in the shot offset range between 10 and 50 m.

### 3.3.2 Calculating the dispersion image (overtone)

The result of dispersion analysis is the color encoded acoustic energy distribution in the phase velocity - frequency plane (see Fig. 3.3a and b).





#### 3.3.3 Analysis of the dispersion image

In the dispersion graphs as calculated in section 3.3.2 above, the curves joining the amplitude peaks of the fundamental modes are determined either by subjective inspection or in a semi-automated manner. On datasets with poorly defined amplitude peaks or with a highly irregular alignment of the peaks, the danger of obtaining improbable or wrong results is real and can only be mitigated by the processing experience and the a-priori knowledge of the geological setting by the geophysicist responsible for the data evaluation.



Fig. 3.3b: The manually picked dispersion images used for the derivation of the shear wave velocity section on line 09SN\_20WIMIS-M1. The dispersion curves (squares) are determined by linking the peaks of high energy. Note that 'higher modes' may at times produce higher energy peaks than the fundamental mode required for the analysis. dotted fine line: signal-noise ratio for the designated f-v<sub>ph</sub> – value.

red line: high resolution beam-forming curve for v<sub>max</sub>.

1<sup>st</sup> row: left: station 123 @ PLUS direction; right: station 118 @ MINUS direction 2<sup>nd</sup> row: left: station 127 @ PLUS direction; right: station 123 @ MINUS direction 3<sup>rd</sup> row: left: station 132 @ PLUS direction; right: station 125 @ MINUS direction 4<sup>th</sup> row: left: station 135 @ PLUS direction; right: station 128 @ MINUS direction

#### swissnuclear - PRP / SP2: seismic shear wave velocity determination





red line: high resolution beam-forming curve for  $v_{max}$ .

<sup>1st</sup> row: left: station 121 @ PLUS direction; right: station 120 @ MINUS direction
 <sup>2nd</sup> row: left: station 123 @ PLUS direction; right: station 122 @ MINUS direction
 <sup>3rd</sup> row: left: station 125 @ PLUS direction; right: station 124 @ MINUS direction
 <sup>4th</sup> row: left: station 134 @ PLUS direction; right: station 128 @ MINUS direction
 Dispersion images of MINUS-direction are vertical normalized to show any dispersion event.



#### 3.3.4 Inversion of dispersion curves resulting in a 1D shear wave velocity distribution

Inversion of the extracted dispersion curves was performed using the algorithm described by Xia et al. (1999).

The inversion process is started by setting the maximum depth  $(z_{max})$  to be in the order of 30% of the largest wavelength for an initial model consisting of 10 layers of increasing thicknesses. For all 10 layers the Poisson's ratio is assumed to be 0.4 and the rock/soil density to be 2.0 g/cm<sup>3</sup>. The inversion process is concluded either after twelve iterations or when the convergence condition of a RMS-error of less than 3 m/s (phase velocity) is met.





2<sup>nd</sup> row: left: station 127 @ PLUS direction; right: station 123 @ MINUS direction 3<sup>rd</sup> row: left: station 132 @ PLUS direction; right: station 125 @ MINUS direction 4<sup>th</sup> row: left: station 135 @ PLUS direction; right: station 128 @ MINUS direction





 $1^{st}$  row: left: station 28 @ PLUS direction; right: station 31 @ MINUS direction  $2^{nd}$  row: left: station 40 @ PLUS direction; right: station 41 @ MINUS direction  $3^{rd}$  row: left: station 49 @ PLUS direction; right: station 47 @ MINUS direction  $4^{th}$  row: left: station 58 @ PLUS direction; right: station 56 @ MINUS direction









### 3.3.5 Gridding and plotting of 2D v<sub>s</sub>-velocity field

By assembling the 1D v<sub>s</sub> - depth functions of all stations the final 2D v<sub>s</sub>-field is derived using a Kriging gridding procedure as portrayed in Fig. 3.3h and 3.3i below:



Fig. 3.3h: PLUS- (above) and MINUS- (below)-MASW-processed shear wave velocity fields of line 09SN\_20WIMIS-M1. Profile station number 101 = profile meter 0, profile station 148 = profile meter 172; station spacing is 1.5







#### 3.3.6 Calculation of the average shear wave velocity

In order to calculate a representative shear wave velocity-depth function of line 09SN\_20WIMIS-M1 at the SED station, all computed 1D-vs-depth functions are averaged (non-weighted mean values). The vs-depth-function is shown in Tab. 3.3a.

| Depth [m] | Vs+ [m/s] | Vs- [m/s] | Vs [m/s] |
|-----------|-----------|-----------|----------|
| 1.2       | 1167      | 1149      | 1158     |
| 2.6       | 1188      | 1106      | 1147     |
| 4.4       | 1099      | 890       | 994      |
| 6.7       | 1099      | 949       | 1024     |
| 9.5       | 1387      | 1249      | 1318     |
| 13.1      | 1624      | 1274      | 1449     |
| 17.5      | 1853      | 1400      | 1627     |
| 23.0      | 2004      | 1620      | 1812     |
| 29.9      | 1993      | 1699      | 1846     |
| 37.4      | 2249      | 2214      | 2231     |
|           |           |           | -        |



#### Tab. 3.3a: Averaged vs - depth function of line 09SN\_20WIMIS-M1 at the SED station WIMIS. Blue line: MASW-'PLUS' processing, red line: MASW-'MINUS' processing; green line: average of PLUS- and MINUS-functions.

In order to calculate an representative shear wave velocity-depth function of line 09SN\_20WIMIS-M2 at the SED station, all computed 1D-v<sub>s</sub>-depth functions are averaged (non-weighted mean values). The resulting  $v_s$ -depth-function is shown in Tab. 3.3b.

| Depth [m] | Vs- [m/s] | Vs+ [m/s] | Vs [m/s] |
|-----------|-----------|-----------|----------|
| 0.9       | 1105      | 552       | 829      |
| 2.0       | 1173      | 504       | 838      |
| 3.5       | 761       | 560       | 660      |
| 5.2       | 800       | 516       | 658      |
| 7.5       | 1407      | 509       | 958      |
| 10.2      | 1685      | 571       | 1128     |
| 13.7      | 1777      | 910       | 1343     |
| 18.0      | 1991      | 1076      | 1534     |
| 23.5      | 2292      | 1012      | 1652     |
| 29.3      | 3200      | 1636      | 2418     |



Vs [m/s]

Tab. 3.3b: Averaged v<sub>s</sub> - depth function of line 09SN\_20WIMIS-M2 at the SED station WIMIS. Blue line: MASW-'PLUS' processing, red line: MASW-'MINUS' processing; green line: average of PLUS- and MINUS-functions. The inversion of the four 70 m-array dispersion curves data (10 to 80 m offset, see Fig. 3.3f and 3.3g) are given in Tab. 3.3c. These values are complemented with the values derived of the 40 m-arrays analyses (Tab. 3.3a and 3.3b).

|       | 70 m array |       |      |       |      |       |      |       | 40 m | array |      |
|-------|------------|-------|------|-------|------|-------|------|-------|------|-------|------|
| depth | m1+        | depth | m1-  | depth | m2+  | depth | m2-  | depth | m1   | depth | m2   |
| 1.8   | 1617       | 0.8   | 1316 | 1.2   | 1286 | 1.1   | 1590 | 1.2   | 1158 | 0.9   | 829  |
| 4.1   | 1613       | 1.9   | 1312 | 2.7   | 1203 | 2.4   | 1670 | 2.6   | 1147 | 2.0   | 838  |
| 6.9   | 1583       | 3.2   | 1216 | 4.6   | 1119 | 4.2   | 1533 | 4.4   | 994  | 3.5   | 660  |
| 10.4  | 1521       | 4.8   | 1219 | 7.0   | 1214 | 6.3   | 1268 | 6.7   | 1024 | 5.2   | 658  |
| 14.8  | 1468       | 6.9   | 1331 | 10.0  | 1301 | 8.9   | 1537 | 9.5   | 1318 | 7.5   | 958  |
| 20.3  | 1584       | 9.4   | 1365 | 13.7  | 1496 | 12.3  | 2044 | 13.1  | 1449 | 10.2  | 1128 |
| 27.2  | 1995       | 12.6  | 1216 | 18.3  | 2057 | 16.4  | 2301 | 17.5  | 1627 | 13.7  | 1343 |
| 35.8  | 2359       | 16.6  | 1141 | 24.1  | 2350 | 21.6  | 2422 | 23.0  | 1812 | 18.0  | 1534 |
| 46.6  | 2248       | 21.6  | 1795 | 31.4  | 1772 | 28.1  | 2558 | 29.9  | 1846 | 23.5  | 1652 |
| 58.2  | 2058       | 27.0  | 1718 | 39.3  | 2645 | 35.1  | 2883 | 37.4  | 2231 | 29.3  | 2418 |

Tab. 3.3c: v<sub>s</sub>-depth values of the four MASW-derived dispersion curves of both seismic line 09SN\_20WIMIS-M1 and 09SN\_20WIMIS-M2 using 70 m-arrays. The dispersion curves are shown in Fig. 3.3f and Fig 3.3g.



Fig. 3.3j: Comparison of the ensemble of inversion results of both lines 09SN\_20WIMIS-M1 and -M2, either using the 40 m- and the 70 m-arrays. blue lines: analyses of records of line 09SN\_20WIMIS-M1, 70 m arrays red lines: analyses of records of line 09SN\_20WIMIS-M2, 70 m arrays green lines: vs-values of analyses of 40 m array records.

### 3.3.7 Calculation of the shear wave velocity scalars $v_{s,5}$ , $v_{s,10}$ , ...

The parameters  $v_{s,5}$ ,  $v_{s,10}$ ,  $v_{s,20}$ ,  $v_{s,30}$ ,  $v_{s,40}$ ,  $v_{s,50}$  represent the average shear wave velocities in the depth interval between the surface and the respective depth levels and are determined from the formula





Fig. 3.3I: Graphs of the averaged  $v_{s,5...}$ -values along the line 09SN\_20WIMIS-M2 for the PLUS-(blue lines) and MINUS- (red lines) directions.

The average values of the s-wave velocity model  $v_{s,5}$ ,  $v_{s,10}$ ,  $v_{s,20}$ ,  $v_{s,30}$ ,  $v_{s,40}$ ,  $v_{s,50}$ ,  $v_{s,100}$  (= average shear wave velocity from the surface to depths of 5 m, ...until 50 m) on the line segment nearest to the SED station (Tab. 3.3d) are summarized below:

| M1    | Vs,5 | Vs,10 | Vs,20 | Vs,30 | Vs,40 |
|-------|------|-------|-------|-------|-------|
| MINUS | 1181 | 1183  | 1425  | 1573  | n/a   |
| PLUS  | 1092 | 1042  | 1190  | 1292  | 1384  |
| MEAN  | 1137 | 1112  | 1308  | 1433  | 1384  |
|       |      |       |       |       |       |
| M2    | Vs,5 | Vs,10 | Vs,20 | Vs,30 | Vs,40 |
| MINUS | 892  | 1057  | 1360  | 1534  | n/a   |
| PLUS  | 486  | 491   | 621   | 730   | n/a   |
| MEAN  | 689  | 774   | 990   | 1132  | n/a   |

 Tab. 3.3d:
 The average shear wave velocities within the depth intervals from surface down to 5 m, etc.... to 40 m of line 09SN\_20WIMIS-M1 (top) resp. of line 09SN\_20WIMIS-M2 (bottom).



### 3.4 Hybrid Seismic Data Processing

#### 3.4.1 p-wave *Reflection* Seismic Processing Sequence

#### A) Data conditioning

- A1 Reformatting and quality verification of field data
- A2 Recording geometry assignment
- A3 Data editing (suppression of bad / dead traces, etc.)
- A4 Preliminary analysis of refraction velocities

#### **B** Filtering and deconvolution

- B1 Analytical muting of refraction arrivals
- B2 Amplitude recovery / amplitude equalization in time and frequency domains
- B3 Predictive deconvolution parameter tests / application
- B4 Determination of band limiting corner frequencies / application
- B5 Optional 2-D filtering

#### C) Velocity analysis and stack

- C1 Common Depth Point (CDP) sort
- C2 Semblance velocity analysis using supergathers of 3 5 CDP's
- C3 Optional dip move-out correction
- C4 Normal Move-Out (NMO) correction and application of stretch mute
- C5 Band-pass filtering
- C6 CDP stack
- C7 Optional coherency filtering

#### D) Time-depth conversion

- D1 Optional spiking deconvolution
- D2 Band-pass filtering
- D3 Depth conversion
- D4 Final display of seismic depth section with inversed polarity (non-SEG-convention)

#### 3.4.2 The presentation of reflection seismic data

The reflection seismic processing of the p-wave dataset does not give any useful result for lack of reflection events in the nearly homogeneous limestone.



### 3.4.3 p-wave refraction tomography processing

The seismic p-wave refraction processing steps are analogous to those described in paragraph 3.2. For a detailed method statement and a description of the processing steps please refer to the summary report. The Figs. 3.4d to 3.4i and Tab. 3.4a illustrate the intermediate processing steps and the final result.



Fig. 3.4d: p-wave records of 09SN\_20WIMIS-P1 (top) and -P2 (bottom) with positive amplitude excursions in black. Colored dots mark the manually picked first break arrival times. Vertical axis: travel time in ms, horizontal axis: station numbers spaced at 1.5 m.









Fig. 3.4f: 3-dimensional distance-travel time diagrams at the mid-points between source points and receiver stations are instrumental when using the analytical CMP derivation of the initial velocity field. The horizontal axes are along the CMP positions and the travel time respectively, the vertical axis denotes the offset distance between source and receiver positions.

| Depth [m] | Vp [m/s] | Depth [m] |
|-----------|----------|-----------|
| 0.0       | 817      | 0.0       |
| 0.2       | 1443     | 0.3       |
| 0.3       | 1864     | 0.5       |
| 0.7       | 2107     | 0.9       |
| 1.1       | 2348     | 1.5       |
| 1.7       | 2729     | 2.4       |
| 2.5       | 3152     | 3.5       |
| 3.7       | 3601     | 5.1       |
| 5.2       | 3781     | 7.3       |
| 7.4       | 4511     | 10.5      |
| 10.5      | 4977     | 14.9      |
| 14.8      | 5000     | 21.0      |
|           |          | 29.7      |

Tab. 3.4a: Initial 1D p-wave velocity model derived from real data (left: 09SN 20WIMIS-P1; right: -P2).

GeoExpert ag



Fig. 3.4g: Compressional wave velocity field image along the seismic profiles 09SN-20WIMIS-P1 (above) and -P2 (below). Red/white colors indicate solid rock, blue/black colors unconsolidated sediments and soil. Vertical axis: elevation [m a.s.l]; horizontal axis: profile meter; color scale:  $v_s$  [m/s]; no vertical exaggeration; gray squares: receiver stations; red triangles: shot positions; magenta crosses: positions of determined velocity values. The station spacing is 1.5 m, profile meter 0 = profile station number 101, profile meter 72 = profile station number 148.





| Depth [m]    | Vp [m/s]     |
|--------------|--------------|
| 0.0          | 1089         |
| 0.9          | 2045         |
| 1.6          | 2581         |
| 2.4          | 3347         |
| 3.2          | 3372         |
| 4.0          | 3044         |
| 4.8          | 3104         |
| 5.5          | 3341         |
| 6.3          | 3981         |
| 7.1          | 4706         |
| 7.9          | 4755         |
| 8.7          | 4589         |
| 9.4          | 4151         |
| 10.2         | 4339         |
| 11.0         | 4615         |
| 11.8         | 4855         |
| 12.6         | 5082         |
| 11.8<br>12.6 | 4855<br>5082 |

| Depth [m] | Vp [m/s] |  |  |  |
|-----------|----------|--|--|--|
| 0.0       | 1355     |  |  |  |
| 0.8       | 1715     |  |  |  |
| 1.6       | 2251     |  |  |  |
| 2.4       | 2661     |  |  |  |
| 3.2       | 3032     |  |  |  |
| 4.0       | 3413     |  |  |  |
| 4.8       | 3730     |  |  |  |
| 5.6       | 3968     |  |  |  |
| 6.4       | 4124     |  |  |  |
| 7.2       | 4260     |  |  |  |
| 8.0       | 4393     |  |  |  |
| 8.8       | 4597     |  |  |  |
| 9.6       | 4653     |  |  |  |
| 10.4      | 4547     |  |  |  |
| 11.2      | 4663     |  |  |  |
| 12.0      | 5045     |  |  |  |
| 12.8      | 5405     |  |  |  |
| 13.6      | 5663     |  |  |  |
| 14.4      | 5886     |  |  |  |

Tab. 3.4b: Final 1D p-wave velocity model derived from real data at line 09SN\_20WIMIS-P1 (left) resp. at line -P2 (right) .



Fig. 3.4i: Final 1D p-wave velocity model derived from real data at line 09SN\_20WIMIS-P1 (left) resp. at line -P2 (right). Initial 1D p-wave velocity model values are given in Tab. 3.4a.



# 4 DISCUSSION OF THE RESULTS

### 4.1 Summary and Validation of the Results

Compressional and shear wave velocity data from refraction seismic surveys both p-wave and s-wave and also the MASW survey data of profiles 09SN\_20WIMIS-1 and 09SN\_20WIMIS-2 are shown in Tab. 4.1 for the uppermost 30 m. The calculated shear wave velocity  $v_{s(calc)}$  in Tab. 4.1 is derived by using a theoretical  $v_p/v_s$ -ratio of  $\sqrt{3}$ .

| Depth | Vp1  | Vp2  | Vs1  | Vs1  | Vs2  | Vs2  | Vs1  | Vs2  | 0                 |                                 |
|-------|------|------|------|------|------|------|------|------|-------------------|---------------------------------|
|       | meas | meas | meas | calc | meas | calc | MASW | MASW |                   |                                 |
| 0     | 1089 | 1355 | 870  | 629  | 536  | 782  | 1158 | 829  |                   |                                 |
| 1     |      |      | 1183 |      | 803  |      | 1147 | 838  |                   |                                 |
| 2     | 2346 | 1904 | 1373 | 1355 | 1010 | 1100 |      | 660  | 5                 |                                 |
| 3     | 2867 | 2535 | 1349 | 1655 | 1324 | 1464 | 994  | 658  | -                 | - <b></b>                       |
| 4     | 3372 | 3032 | 1419 | 1947 | 1409 | 1750 | 1024 |      |                   |                                 |
| 5     | 3000 | 3532 | 1536 | 1732 | 1597 | 2039 |      | 958  |                   | ר ולצו ו∕ו ווו                  |
| 6     | 3209 | 3885 | 1570 | 1853 | 1695 | 2243 |      |      | 10                |                                 |
| 7     | 3981 | 4124 | 1498 | 2298 | 1854 | 2381 | 1318 | 1128 |                   |                                 |
| 8     | 4625 | 4306 | 1483 | 2670 | 1910 | 2486 |      |      |                   |                                 |
| 9     | 4663 | 4393 | 1455 | 2692 | 1824 | 2536 |      |      |                   |                                 |
| 10    | 4151 | 4654 | 1427 | 2396 | 1817 | 2687 | 1449 | 1343 | 45                |                                 |
| 11    | 4330 | 4588 | 1504 | 2500 | 1772 | 2649 |      |      | 15 _              |                                 |
| 12    | 4702 | 4663 | 1840 | 2715 | 1769 | 2692 |      |      | -                 |                                 |
| 13    | 4885 | 5167 | 1878 | 2820 | 1797 | 2983 | 1627 |      | <u> </u>          | <u> </u>                        |
| 14    |      | 5598 |      |      | 1885 | 3232 |      | 1534 | ÷                 | 1 5                             |
| 15    |      | 5886 |      |      | 1940 | 3398 |      |      | <mark>ອ</mark> 20 |                                 |
| 16    |      |      |      |      | 2090 |      |      |      | σ                 | Up1(ref ra)                     |
| 17    |      |      |      |      | 2177 |      | 1812 |      |                   | ····· Vs2(calc)                 |
| 18    |      |      |      |      | 2364 |      |      | 1652 |                   |                                 |
| 19    |      |      |      |      |      |      |      |      | 25                |                                 |
| 20    |      |      |      |      |      |      |      |      |                   |                                 |
| 21    |      |      |      |      |      |      |      |      |                   | Up2(ref ra)                     |
| 22    |      |      |      |      |      |      |      |      |                   | ····· Vs2(calc)                 |
| 23    |      |      |      |      |      |      | 1846 | 2418 | 30                |                                 |
| 24    |      |      |      |      |      |      |      |      |                   | vs2(ref ra)                     |
| 25    |      |      |      |      |      |      |      |      |                   | Vs2(MASW)                       |
| 26    |      |      |      |      |      |      |      |      |                   |                                 |
| 27    |      |      |      |      |      |      |      |      | 35                |                                 |
| 28    |      |      |      |      |      |      |      |      | 00 +              |                                 |
| 29    |      |      |      |      |      |      |      |      | 0                 | 0 1000 2000 3000 4000 5000 6000 |
| 30    |      |      |      |      |      |      | 2231 |      |                   |                                 |
|       |      |      |      |      |      |      |      |      | -                 | velocity [m/s]                  |

Tab. 4.1: Shear and compressional wave velocity model determined at the SED station WIMIS.

Fig. 4.1: Graphic display of measured (continuous lines) and calculated (dotted lines) wave velocities at the SED station. In blue colors values of p-wave dataset, in red colors of s-wave datases and in green colors values of MASW analyses.

### 4.2 Validation of the methods and their results

Due to methodological differences, v<sub>s</sub> velocities derived by MASW analysis and by the refraction tomography technique may differ considerably. This is because MASW analysis cannot image small rock/soil inhomogeneities as a dispersion image with an array length of i.e. 40-m only yields one single v<sub>s</sub>-value at each depth. On the other hand, refraction diving wave tomography results produce v<sub>s</sub>-sections with a high lateral resolution, but fail to provide information at greater depths.

### 4.3 Error Estimates

The error estimates given in Tab. 4.3 below are relevant only in the context of this survey.

| Surveying method                       | Type of result                        | Error estimate |
|----------------------------------------|---------------------------------------|----------------|
| v <sub>s</sub> – refraction tomography | v <sub>s</sub> – velocity field image | 15%            |
| MASW only "+" or only "-" values       | vs – velocity field image             | 20%            |
| MASW (mean of "+" & "-" values)        | vs – velocity field image             | 15%            |
| v <sub>p</sub> – refraction tomography | v <sub>p</sub> – velocity field image | 10%            |

Tab. 4.3 Error estimates for the methods applied. Note that higher error estimates are to be taken into account with increasing depths.

The above error estimates are of a qualitative character only. A handicap in both MASW and refraction tomography was that large velocity contrasts in the uppermost half a meter along the profiling. So interrupt considerably the two bunker entrances along line 09SN\_20WIMIS-1 (profile meter 22 (where the SED monitoring station is located in) and 38) the wave field. This leads to nonlinear surface waves and non-linear refraction first breaks. On line 09SN\_20WIMIS-2, tectonic faults resp. layerings with weathered contacts of 0.5 to 4 m width disturbed the data as well.

Nevertheless, all velocity data coincide well, independently of the methodological differences, the MASW values are generally 10 - 30 percent lower than refraction tomography values.



## 5 SUMMARY AND CONCLUSIONS

- In April 2009 a combined seismic s- and p-wave survey was carried out at the SED earthquake monitoring station WIMIS near Wimmis BE.
- The wave generation was conducted directly onto the solid rock where possible. So are the horizontal and vertical geophones planted in direct contact with the rock where possible.
- The shear wave data have been evaluated by conventional diving wave refraction tomography techniques in order to derive the s-wave velocity field along the seismic line. Due to the inherent constraints of the refraction tomography method, the depth of investigation is limited to 12 m under the prevailing geological conditions.
- The p-wave data have been processed
  - firstly to derive a 2D s-wave velocity field by using the MASW (Multichannel Analysis of Surface Waves) technique;
  - and secondly, according to the hybrid seismic data processing scheme for representing the subsurface structures in a combined reflection seismic section with the superimposed p-wave velocity field.
- The shear wave velocity range determined by the MASW method in the uppermost 30 meters spans from values of 658 m/s to 2418 m/s.
- The scalar values derived by the MASW survey at the SED station (seismic line 09SN\_20WIMIS-M1, profile station 55; seismic line 09SN\_20WIMIS-M2, profile station 45) are the following:

| line 1        |   |          | line 2              |          |
|---------------|---|----------|---------------------|----------|
| Vs,5          | = | 1137 m/s | V <sub>s,5</sub> =  | 689 m/s  |
| <b>V</b> s,10 | = | 1112 m/s | v <sub>s,10</sub> = | 774 m/s  |
| <b>V</b> s,20 | = | 1308 m/s | V <sub>s,20</sub> = | 990 m/s  |
| <b>V</b> s,30 | = | 1433 m/s | V <sub>s,30</sub> = | 1132 m/s |
| <b>V</b> s,40 | = | 1384 m/s | Vs,40 =             | n/a      |

- The estimated reliable refraction shear wave velocity of hard rock is 1750 m/s.
- The estimated reliable refraction compressional wave velocity of hard rock is 4300 m/s
- The geophysical interpretation of the subsurface structures in this report are to be validated and incorporated into a comprehensive appraisal by a geologist familiar with the local geological setting.

Schwerzenbach, 8<sup>th</sup> July 2009

Lake Te.

Walter Frei dipl. Natw. ETH managing director

borenz Keller dipl. Natw. ETH project manager