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Abstract

Ambient vibration array measurements were performed to characterize the site Triesenberg, in
Liechtenstein. The site, where the new strong motion station STRW was installed, is located on
the Triesenberg landslide. The new station was installed in the frame of the Renewal of strong
motion seismic network in the Principality Liechtenstein project. In order to characterize the
velocity profile under the station, array measurements with a 330m aperture were performed.
The measurements were successful and allowed deriving a velocity model for this site. We
found a gradient velocity profile with the depth increasing velocity. Velocitites reach 250 −
300m/s close to the surface, increase gradually to 600 − 700m/s at depth 25m, and further
increase 900 − 1500m/s at depth 50m. The uncertainty increase gradually with the depth as
well. The bedrock depth is not well constrained, but the data require maximum velocity of at
least 1500m/s, at minimum depth of 40m (or more).
Vs,30 is 449m/s would generally correspond to ground type B in the Eurocode 8 [CEN, 2004],
and C (according to Vs,30) for the SIA261 [SIA, 2014]. The theoretical 1D SH transfer function
and impedance contrast of the quarter-wavelength velocity computed from the inverted profiles
show moderate amplifications at clearly defined resonance frequencies. Recordings on the new
station will allow to compare to these simple models.
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4 1 INTRODUCTION

1 Introduction

The station STRW (Triesenberg - Werkhof, FL) is part of the strong motion network of the Prin-
cipality Liechtenstein, and is run within the Swiss Strong Motion Network (SSMNet). STRW
has been installed in the framework of the Renewal of strong motion seismic network in the
Principality Lichtenstein project in 2014. This project includes also the site characterization.
Passive array measurements have been selected as a standard tool to investigate these sites. An
array measurement was carried out on 20th November 2014 in the rural area, close to the road
maintenance depot of the Triesenberg municipality (Fig. 1). The array consisted of four ec-
centric rings (polygons). A vertex of the smallest ring was close to STRW, whereas STRW is
located rather at the central part of the outer rings. Such irregular configuration was selected
in order to characterize the velocity profile under the STRW station and reducing the influence
of local sources due to the road maintenance depot which is close by. This report presents the
measurement setup, the results of the H/V analysis and of the array processing of the surface
waves (dispersion curves). Then, an inversion of these results into velocity profiles is performed.
Standard parameters are derived to evaluate the amplification at this site.

Staat City Location Station code Site type Slope

Liechtenstein Triesenberg Werkhof STRW Active landslide Slope

Table 1: Main characteristics of the study-site.

Figure 1: Picture of the site.



5

2 Geology

The geological map indicates that the site is located on postglacial landslide mass. The bedrock
(Fig. 2) consits of the Vorarlberger Flysch unit and contains Schists, limestones, sandstones,
flysch. A more detailed geological description is provided by [Francois et al., 2007]. The
station is located at the currently rather inactive deep seated landslide (depth downto 80m),
close to the border with shallow active part (10 − 20m depth range). The active slide has
an area of 3.1 km2 and a volume of 37 106m3 [Francois et al., 2007]. It consits of elements of
limestone, sandstone, dolomite, flysch, and Quaternary deposits in a clayey silt matrix [Francois
et al., 2007]. Considering the entire landslide, velocities of the movement range between 0 −
3 cm/year depending on the exact location, based on the measurements between 1976-1981
and 1996-1997 [Francois et al., 2007]. The STRW should move approximately one centimeter
per year.

Figure 2: Geological map of the area of station STRW (green diamond) including the array (blue and red symbols).
The cyan color referes to postglacial landslide mass, the dark blue to the Vorarlberger Flysch, the magenta and gold
colors to the Austroalpine zone, yellow color to the Arosa zone. The black solid line shows the limits of the entire
landslide, whereas the dotted line shows the border between the active shallow (to the west) and rather inactive

deep seated (to the east) landslides.

3 Experiment description

3.1 Ambient Vibrations

The ground surface is permanently subjected to ambient vibrations due to:

• natural sources (ocean and large-scale atmospheric phenomena) below 1Hz,

• local meteorological conditions (wind and rain) at frequencies around 1Hz ,
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• human activities (industrial machines, traffic. . . ) at frequencies above 1Hz [Bonnefoy-
Claudet et al., 2006].

The objective of the measurements is to record these ambient vibrations and to use their prop-
agation properties to infer the underground structure. First, the polarization of the recorded
waves (H/V ratio) is used to derive the resonance frequencies of the soil column. Second, the
arrival time delays at many different stations are used to derive the velocity of surface waves
at different frequencies (dispersion). The information (H/V, dispersion curves) is then used to
derive the properties of the soil column using an inversion process.

3.2 Equipment

For these measurements 12 Quanterra Q330 dataloggers named NR01 to NR12 and 14 Lennartz
3C 5 s seismometers were available (see Tab. 2). Each datalogger can record on 2 ports A
(channels EH1, EH2, EH3 for Z, N, E directions) and B (channels EH4, EH5, EH6 for Z, N,
E directions). Time synchronization was ensured by GPS. The sensors were placed on a metal
tripod, in a 20 cm deep hole, when necessary, for better coupling with the ground.

Digitizer Model Number Resolution
Quanterra Q330 12 24 bits

Sensor type Model Number Cut-off frequency
Velocimeter Lennartz 3C 14 0.2Hz

Table 2: Equipment used.

3.3 Geometry of the arrays

Two array configurations were used. In the first configuration, 3 eccentric rings of approxi-
mately 10, 25 and 60m radius were deployed for a total of 14 sensors. The STRW station is
close to the center of the smallest ring. The configuration is quite irregular because of many
obstacles (houses, streets). The second configuration includes an outer ring of approximately
160m (plus the most outer ring of the first configuration and one station of the innermost ring),
13 sensors in total. The minimum inter-station distance and the aperture are therefore 10 and
120m and 10 and 320m, respectively. The experimental setup is displayed in Fig. 3. The final
usable datasets are detailed in section 4.2.

3.4 Positioning of the stations

The sensor coordinates were measured using a differential GPS device (Leica Viva GS10),
including only a rover station and using the Real Time Kinematic technique provided by Swis-
stopo. It allows an absolute positioning with an accuracy better than 6 cm on the Swissgrid.
This accuracy was reached for all stations.
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Figure 3: Geometry of the arrays. Red triangles refer to the first configuration, blue squares refer to the second
configuration, and green diamond to the STRW station.
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4 Data quality

4.1 Usable data

The largest time windows were extracted, for which all the sensors of the array were correctly
placed and the GPS synchronization was ensured. Recordings are generally consistent. Inco-
herent high amplitude signals present at TRI304, TRI305, TRI405 are mainly due to car traffic,
since these stations were located close to a relatively busy road. The characteristics of the
datasets are detailed in Tab. 3.

4.2 Data processing

The data were first converted to SAC format including in the header the coordinates of the point
(CH1903 system), the recording component and a name related to the position. The name is
made of 3 letters characterizing the location (TRI here), 1 digit for the ring and 2 more digits
for the number in the ring (zero for the central station of the corresponding ring - if present).
Recordings were not corrected for the instrumental response.

Dataset Starting Date Time Length Fs Min. inter-distance Aperture # of points

1 2014/11/20 10:45 103min 200Hz 10m 120m 14
2 2014/11/20 13:45 90min 200Hz 10m 400m 13

Table 3: Usable datasets.
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5 H/V processing

5.1 Processing method and parameters

In order to process the H/V spectral ratios, several codes and methods were used. The classical
H/V method was applied using the Geopsy http://www.geopsy.org software. In this
method, the ratio of the smoothed Fourier Transform of selected time windows are averaged.
Tukey windows (cosine taper of 5% width) of 50 s long overlapping by 50% were selected.
Konno and Ohmachi [1998] smoothing procedure was used with a b value of 60. The multitaper
method of the spectra estimates [Prieto et al., 2009] was applied as well with the time bandwidth
product of 2.5 and 4 tapers. The classical method of Fäh et al. [2001] was also performed.

Moreover, the time-frequency analysis method [Fäh et al., 2009] was used to estimate the
ellipticity function more accurately using the Matlab code of V. Poggi. In this method, the
time-frequency analysis using the Wavelet transform is computed for each component. For each
frequency, the maxima over time (10 per minute with at least 0.1 s between each) in the TFA are
determined. The Horizontal to Vertical ratio of amplitudes for each maximum is then computed
and statistical properties for each frequency are derived. A Cosine wavelet with parameter 9 is
used. The mean of the distribution for each frequency is stored. For the sake of comparison, the
time-frequency analysis of Fäh et al. [2001], based on the spectrogram, was also used.

The ellipticity extraction using the Capon analysis [Poggi and Fäh, 2010] (see section on
array analysis) was also performed.

Method Freq. band Win. length Anti-trig. Overlap Smoothing

Standard H/V Geopsy 0.2− 20Hz 50 s No 50% K&O 60
Standard H/V Multitaper 0.2− 40Hz 200 s No - -

Standard H/V D. Fäh 0.2− 20Hz 30 s No 75% -
H/V TFA D. Fäh 0.2− 20Hz Specgram No - -

H/V TFA V. Poggi 0.2− 20Hz Cosine wpar=9 No - No

Table 4: Methods and parameters used for the H/V processing.

5.2 Results

All the methods to compute H/V ratios are compared at station TRI103, closest to STRW
(Fig. 4), in which the classical methods were divided by

√
2 to correct from the Love wave

contribution [Fäh et al., 2001]. Overall, the classical and TFA methods match well.

All points of the array show similar same shape in their H/V with a peak (Fig. 5) at 1.6Hz.
The potential right flank of the ellipticity curve is consistently observed between 1.6− 3Hz. A
secondary H/V peak might be idetnified between 3 − 5Hz with variable amplitude. The H/V
curves for stations of the two innermost rings are shown in Fig. 6 together with the ellipticity
curves of the fundamental mode obtained by the array method. The resolution limits of the
array do no allow to retrieve fundamental peaks and right flank by the array method. The high
frequency part of the ellipticity curve retrieved by the array method does not show the secondary

http://www.geopsy.org
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peak and is at rather lower level with respect to single station H/V curves. Concluding, the
fundamental peak at the STRW station is at 1.6Hz, with a peak amplitude around 3 for the TFA
methods.

Figure 4: H/V spectral ratios for point TRI103 using the different codes. Classical methods were divided by
√
2.

Figure 5: H/V spectral ratios (time-frequency analysis code V. Poggi).

5.3 Polarization analysis

Polarization analysis on the array data was performed using the method of Burjánek et al.
[2010]. Most of the points (Fig. 7) show a weak particular East-West polarization especially in
the frequency band 3− 5Hz, which corresponds to the secondary H/V peak. Clusters of points
with similar polarization can be identified. For example, stations of the outermost ring (except
TRI401) and stations TRI304, TRI305 do not show the specific East-West polarization between



5.3 Polarization analysis 11

Figure 6: H/V spectral ratios for the two innermost rings. Ellipticity curves obtained by the array method are show
in black.

3 − 5Hz. Thus it seems, that this feature is related to the inner part of the array. However, we
do not have any specific interpretation at the moment.
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Figure 7: Strike of the polarization for all stations.
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6 Array processing

6.1 Processing methods and parameters

The vertical components of the arrays were processed using the High-resolution FK (HRFK)
analysis [Capon, 1969] using the Geopsy http://www.geopsy.org software. Better re-
sults were obtained using large time windows (200T). Moreover, a 3C array analysis [Fäh
et al., 2008] was also performed using both the array_tool_3C software [Poggi and Fäh, 2010]
(HRFK). It allows to derive Rayleigh and Love modes including the Rayleigh ellipticity. Since
the array was deployed on a slope, the NEZ Cartesian system (North-South; East-West; Verti-
cal) used usually in the analysis might not be the best in this case. Surface waves might rather
propagate along the tilted free surface. That’s why we tried to rotate both station coordinates
and recording components into a new system, which has a horizontal plane parallel to the slope.
In particular, we find a best fitting plane in 3D given the station coordinates (including station
elevation). This best fitting plane has a strike of 152 deg. and a dip (slope) of 17.5 deg.. We
defined a new coordinate system fixed to this plane (first axis along the strike, second axis along
the dip, and third axis normal to that plane). Afterwards, both recording components and sta-
tion coordinates were expressed (rotated in 3D) in this new coordinate system. Finally, all array
proccessing was performed with this rotated dataset as well.

Method Set Freq. band Win. length Anti-trig. Overlap Grid step Grid size # max.

HRFK 1C 1 1− 20Hz 200T No 50% 0.0035 0.769 2
HRFK 1C 2 1− 20Hz 200T No 50% 0.0012 0.289 2
HRFK 3C 1 1− 40Hz Wav. 10 No 50% 200 2500 5

Tap. 0.1 m/s m/s
HRFK 3C 2 1− 40Hz Wav. 10 No 50% 200 2500 5

Tap. 0.1 m/s m/s

Table 5: Methods and parameters used for the array processing (both rotated & unrotated).

6.2 Obtained dispersion curves

Selected results of the different FK analysis are presented in Fig. 8 for the vertical and in Fig. 9
for the transversal component, comparing the results for the rotated and original datasets. The
rotation did not lead to better results (i.e., to a lower scatter). Just in opposite, it was possible
to pick the Rayleigh fundamental mode just up to 15Hz with the rotated dataset, and up to
20Hz with the original dataset. All the different picks with different codes are summarized in
Fig. 10. In general, the pickings are in good agreement (comparing different methods). The
picking of the Love fundamental mode is the same for both rotated and original datasets. The
picking of the Raleigh fundamental mode is slightly different in frequency band of 4 - 8Hz for
the rotated and unrotated datasets. Finally, we prefered the results for the original dataset, as it
is less scattered. Rayleigh fundamental mode could be picked between 2.5 - 20Hz, and Love
mode between 2.7 - 8.9Hz. All picked curves, trimmed according to the resolution limits, are
presented together on Fig. 11. The potential Love 1st higher mode was not used in the inversion
because of very high scatter.

http://www.geopsy.org
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Figure 8: Dispersion curves from the 1C analysis of the vertical component. Top: Original dataset (first and second
configuration); Bottom: Rotated dataset (first and second configuration).

Figure 9: Dispersion curves from the 3C analysis of the transversal component. Top: Original dataset (first and
second configuration); Bottom: Rotated dataset (first and second configuration).
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Figure 10: Picked dispersion curves from 1C and 3C HRFK methods. Colors distinguish vertical (blue) and
transversal components (red). Lines show the results for the original dataset, whereas the symbols show results for

the rotated datasets. The different line-styles and symbols distinguish the different methods.

Figure 11: Final dispersion curves from 1C and 3C HRFK methods used in the inversion.
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7 Inversion and interpretation

7.1 Inversion

For the inversion, Rayleigh fundamental and Love fundamental mode dispersion curves be-
tween 2.5 and 20Hz, as well as the ellipticity of the fundamental mode were used as simultane-
ous targets without standard deviation to avoid different weighting. The first higher Love mode
was not used in the inversion as it was subjected to a very high uncertainty and did not seem
compatible with rest of the dataset (after the first round of inversions). A very low weight of
0.01 was assigned to the ellipticity curve. All curves were resampled using 100 points between
0.5 and 20Hz in log scale.

The inversion was performed using the Improved Neighborhood Algorithm (NA) Wathelet
[2008] implemented in the Dinver software. In this algorithm, the tuning parameters are the
following: Ns0 is the number of starting models, randomly distributed in the parameter space,
Nr is the the number of best cells considered around these Ns0 models, Ns is the number of
new cells generated in the neighborhood of the Nr cells (Ns/Nr per cell) and Itmax is the
number of iteration of this process. The process ends with Ns0 +Nr ∗ Ns

Nr
∗ Itmax models. The

used parameters are detailed in Tab. 6.

Itmax Ns0 Ns Nr

200 10000 400 100

Table 6: Tuning parameters of Neighborhood Algorithm.

The velocity was assumed to increase with depth. The Poisson ratio was inverted in each
layer in the range 0.2-0.45. The density was assumed between 2100 and 2600 kg/m3. A number
of inversions with fixed and free layer depths were performed (testing different parametriza-
tions). Two different parametrization schemes were finally considered (20 fixed depth layers
and 3 free depth layers). The three layer model (two layers over half-space) represents an ex-
treme case, which is still capable to represent well the dispersion curves, and fits the secondary
ellipticity peak. For further elaborations, the best models of these 2 runs were selected (Fig. 14)
and additional 20 models for each of the two runs, which sample roughly the uncertainty of the
inversion.

We found a gradient velocity profile with the depth increasing velocity. Velocitites reach
250− 300m/s close to the surface, increase gradually to 600− 700m/s at depth of 25m, and
further increase 900 − 1500m/s at depth of 50m. The uncertainty increase gradually with the
depth as well. The bedrock depth is not well constrained, but the data require maximum velocity
of at least 1500m/s, at minimum depth of 40m (or more).

The dispersion curves are well represented. The fundamental peak of the ellipticity curve
can be fitted only with the gradient model (i.e., with the fine fixed depth layering). Any stronger
interface would result in a pronounced peak in the ellipticity, which is not observed.



7.1 Inversion 17

Figure 12: Comparison between inverted and measured Rayleigh, Love modes, ellipticity curves in case of fixed
depth layer approach. Corresponding inverted ground profiles in terms of Vp and Vs are plotted in bottom.

Figure 13: Comparison between inverted and measured Rayleigh, Love modes, ellipticity curves in case of free
depth layer approach. Corresponding inverted ground profiles in terms of Vp and Vs are plotted in bottom.
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Figure 14: Vs ground profiles for the selected 40 best models. Different colors distinguish different parametriza-
tions.

7.2 Travel time average velocities and ground type

The distribution of the travel time average velocities at different depths was computed from
the selected models. The uncertainty, computed as the standard deviation of the distribution of
travel time average velocities for the considered models, is also provided, but it is not guaranteed
that the full range of uncertainties is covered. Vs,30 is found to be 449m/s, which corresponds
to ground type B in the Eurocode 8 [CEN, 2004], and C for the SIA261 [SIA, 2014].

Mean Uncertainty
(m/s) (m/s)

Vs,5 272 27
Vs,10 300 7
Vs,20 391 15
Vs,30 449 10
Vs,40 491 7
Vs,50 531 9
Vs,100 758 18

Table 7: Travel time averages at different depths from the inverted models. Uncertainty is given as one standard
deviation from the selected profiles.

7.3 SH transfer function and quarter-wavelength velocity

The quarter-wavelength velocity approach [Joyner et al., 1981] provides, for a given frequency,
the average velocity at a depth corresponding to 1/4 of the wavelength of interest. It is useful
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Figure 15: Quarter wavelength velocity representation of the velocity profile (top: depth, centre: velocity, bottom:
inverse of the impedance contrast). Grey bar corresponds to Vs,30.
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Figure 16: Theoretical SH transfer function (solid line) and quarter wavelength impedance contrast (dashed line)
with their standard deviation. Significance of the greyshades is detailed in Fig. 15.

to identify the frequency limits of the experimental data (minimum frequency in dispersion
curves at 2.5Hz and ellipticity peak at 1.6Hz here). The results using this proxy show that
the dispersion curves constrain the profiles down to 50m and the ellipticity down to 150m
(Fig. 15). Moreover, the quarter wavelength impedance-contrast introduced by Poggi et al.
[2012] is also displayed in the figure. It corresponds to the ratio between two quarter-wavelength
average velocities, respectively from the top and the bottom part of the velocity profile, at a
given frequency [Poggi et al., 2012]. It shows a trough (inverse shows a peak) at the resonance
frequency.
Moreover, the theoretical SH-wave transfer function for vertical propagation [Roesset, 1970]
is computed from the inverted profiles. It is compared to the quarter-wavelength amplification
[Joyner et al., 1981] that however cannot take resonances into account (Fig. 16). In this case,
the models are predicting a peaky amplification up to a factor of 3 at several resonance peaks
between 1 and 10Hz.

8 Conclusions

The array measurements presented in this study were successful in deriving a velocity model
for the site of the STRW station. We found a gradient velocity profile with the depth increasing
velocity. Velocitites reach 250 − 300m/s close to the surface, increase gradually to 600 −
700m/s at depth 25m, and further increase 900 − 1500m/s at depth 50m. The uncertainty
increase gradually with the depth as well. The bedrock depth is not well constrained, but the
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data require maximum velocity of at least 1500m/s, at minimum depth of 40m (or more).
Vs,30 is 449m/s would generally correspond to ground type B in the Eurocode 8 [CEN, 2004],
and C for the SIA261 [SIA, 2014]. The theoretical 1D SH transfer function and impedance
contrast of the quarter-wavelength velocity computed from the inverted profiles show significant
amplifications at clearly defined resonance frequencies. Recordings on the new station will
allow to compare to these simple models.
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