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Abstract

Ambient vibration array measurements were performed to characterize the fluvial deposits at
site Martigny Octodure. The site, where the new station SMAO of the Swiss Strong Motion
Network was installed, is located on the deeply filled glacial valley of the Dranse river, adjacent
to the main Rhone valley. SMAO replaces the dial-up station SMAV. In order to characterize the
velocity profile under the station, array measurements with a 400 m aperture were performed.
In addition, single station measurements showed a weak 2D behaviour of this valley. The fun-
damental resonance frequency is found at 0.85 Hz. The measurements were successful and
allowed deriving a velocity model for this site. The soil column underlying station SMAO is
made of only 3 m of soft sediments, variable across the array, on top on highly consolidated
sediments (20 m at 700 m/s and 200 m at 1000 m/s). An interface around 250 m was found (ve-
locity above 1500 m/s) but it cannot be assured that is corresponds to the bedrock that could be
even deeper considering the geological and geomorphological indications. Vs,30 is at 570 m/s.
The ground type is B for EC8 [CEN, 2004] and SIA261 [SIA, 2003]. The theoretical SH
transfer function and impedance contrast of the quarter-wavelength velocity computed from the
inverted profiles show moderate amplifications at low frequencies increasing with frequency up
to a factor of 5 at high frequencies. Recordings of the new station will allow to validate these
simple 1D models.
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4 1 INTRODUCTION

1 Introduction

The station SMAO (Martigny - rue d’Octodure) is part of the Swiss Strong Motion Network
(SSMNet) in the Rhone valley. SMAO has been installed in the framework of the SSMNet
Renewal project in 2012 and replaces the dial-up station SMAV (Martigny - Verdan). This
project includes also the site characterization. Passive array measurements have been selected
as a standard tool to investigate these sites. Such a measurement campaign was carried out on
26th June 2012 around the station (Fig. 1), with a centre close to SMAO, in order to characterize
the sediments under this station. According to the geological map, this station is located on a
deeply filled glacial valley (Dranse river) adjacent to the main Rhone valley. In addition, a
single station measurement campaign was performed across the valley of the Dranse river. This
report presents the previous available data, the new measurement setup, the results of the H/V
analysis and of the array processing of the surface waves (dispersion curves). Then, an inversion
of these results into velocity profiles is performed. Standard parameters are derived to evaluate
the amplification at this site.

Canton City Location Station code Site type Slope

Valais Martigny Octodure SMAO Sedimentary valley Flat

Table 1: Main characteristics of the study-site.

Figure 1: Picture of the site.
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2 Experiment description

2.1 Ambient Vibrations

The ground surface is permanently subjected to ambient vibrations due to:

• natural sources (ocean and large-scale atmospheric phenomena) below 1 Hz,

• local meteorological conditions (wind and rain) at frequencies around 1 Hz ,

• human activities (industrial machines, traffic. . . ) at frequencies above 1 Hz [Bonnefoy-
Claudet et al., 2006].

The objective of the measurements is to record these ambient vibrations and to use their prop-
agation properties to infer the underground structure. First, the polarization of the recorded
waves (H/V ratio) is used to derive the resonance frequencies of the soil column. Second, the
arrival time delays at many different stations are used to derive the velocity of surface waves
at different frequencies (dispersion). The information (H/V, dispersion curves) is then used to
derive the properties of the soil column using an inversion process.

2.2 Equipment

For the single station measurement and the array measurement campaigns, 1 and 12 Quanterra
Q330 dataloggers named NR01 to NR12 and 1 and 14 Lennartz 3C 5 s seismometers were
available (see Tab. 2), respectively. Each datalogger can record on 2 ports, A (channels EH1,
EH2, EH3 for Z, N, E directions) and B (channels EH4, EH5, EH6 for Z, N, E directions). Time
synchronization was ensured by GPS. For the array measurement, the sensors were placed on a
metal tripod in a 20 cm deep hole, when possible, for better coupling with the ground.

Digitizer Model Number Resolution
Quanterra Q330 1 24 bits
Quanterra Q330 12 24 bits

Sensor type Model Number Cut-off frequency
Velocimeter Lennartz 3C 1 0.2 Hz
Velocimeter Lennartz 3C 14 0.2 Hz

Table 2: Equipment used.

2.3 Geometry of the measurements

The single station measurement consisted in a cross section of 14 points from North to South
(Fig. 2).

For the array measurement, two configurations were used, for a total of 4 rings of 20, 50,
100 and 200 m radius around a central station. The first configuration includes the 3 inner rings
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with 14 sensors; the second configuration includes the 2 outer rings (plus 2 sensors of the first
ring) with 13 sensors. The minimum inter-station distance and the aperture are therefore 20 and
200 m and 20 and 400 m, respectively. The experimental setup is displayed in Fig. 3.

The final usable datasets are detailed in section 3.2.

Figure 2: Position of points of both experiments.

2.4 Positioning of the stations

For the single station measurements, the points were picked on the Swisstopo aerial image, with
an estimated accuracy of 2 m.

For the array, the sensor coordinates were measured using a differential GPS device (Le-
ica Viva GS10), including only a rover station and using the Real Time Kinematic technique
provided by Swisstopo. However, the GSM module did not work (wrong configuration) and
only GPS raw data was written during 5 min at each point, without control on the precision.
Post-processing was performed using the Leica-Geo Office software and a Virtual Reference
provided by Swisstopo. It allowed an absolute positioning with an accuracy better than 5 cm
on the Swissgrid except for point MAO405 with a precision of 11 cm and point MAO402 with
8 cm. This precision was assumed sufficient for this processing.
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Figure 3: Geometry of the array measurement experiment.
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3 Data quality

3.1 Usable data

For the single station experiment, time was not synchronized on GPS. Data is generally noisy
due to the presence of pedestrians and traffic.

For the array, the largest time windows were extracted, for which all the sensors of the
array were correctly placed and the GPS synchronization was ensured. The measurement was
performed in the evening and during the night, the site was generally quiet, except on the sport
field during the first measurement. Light showers occurred during the whole measurement time.
GPS measurements, relatively long, were performed during the recordings.

A machine with a frequency of 7.13 Hz was running during the first dataset. Other machines
were at frequencies above 15 Hz. For the first dataset, point MAO204, MAO304 and in a
lower extent MAO203 were close to people playing football and volleyball and display high
amplitudes on a broad frequency range.

During the second dataset, 50 Hz noise is affecting several traces but it should not affect the
results of the analysis. Important peaks due to soil-structure interaction are noticed at points
MAO401 (2.82, 3.49 and 4.88 Hz) and MAO405 (2.71 and 2.95 Hz). Noise at low frequency
of MAO403 is high, maybe due to coupling issues. Moreover, at some stations (MAO204,
MAO301 and MAO405) the phase shift (b value of the SAC header) appears to be too large for
Geopsy software to determine synchronized windows for processing (H/V, FK). The b values
were therefore set to 0 in the dataset used for these computations. It does not seem to affect the
results.

The characteristics of the datasets are detailed in Tab. 3.

3.2 Data processing

The data were first converted to SAC format including header entries for the point coordinates
(CH1903 system), the recording component and a name related to the position. The name is
made of 3 letters characterizing the location (MTY for the single station measurements, MAO
for the array), and three digits. For the array, they correspond to the ring (first digit) and the
number in the ring (two last digits). Recordings were not corrected for instrumental response.
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Dataset Starting Date Time Length Fs Min. inter-distance Aperture # of points

MTY01 2011/05/10 11:25 30 min 200Hz 1
MTY02 2011/05/10 12:13 30 min 200Hz 1
MTY03 2011/05/10 13:00 30 min 200Hz 1
MTY04 2011/05/10 13:51 30 min 200Hz 1
MTY05 2011/05/10 14:39 30 min 200Hz 1
MTY06 2011/05/10 15:26 30 min 200Hz 1
MTY07 2011/05/10 16:15 30 min 200Hz 1
MTY08 2011/05/10 17:03 30 min 200Hz 1
MTY09 2011/05/11 06:56 30 min 200Hz 1
MTY10 2011/05/11 07:43 30 min 200Hz 1
MTY11 2011/05/11 08:29 30 min 200Hz 1
MTY12 2011/05/11 09:15 30 min 200Hz 1
MTY13 2011/05/11 10:01 30 min 200Hz 1
MTY14 2011/05/11 10:53 30 min 200Hz 1

1 2012/06/26 16:23 124 min 200 Hz 20m 200m 14
2 2012/06/26 19:24 135 min 200 Hz 20m 400m 13

Table 3: Usable datasets.
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4 H/V processing

4.1 Processing method and parameters

In order to process the H/V spectral ratios, several codes and methods were used. The classical
H/V method was applied using the Geopsy http://www.geopsy.org software. In this
method, the ratio of the smoothed Fourier Transform of selected time windows are averaged.
Tukey windows (cosine taper of 5% width) of 50 s long overlapping by 50% were selected.
Konno and Ohmachi [1998] smoothing procedure was used with a b value of 80. The classical
method computed using the method of Fäh et al. [2001] was also performed.

Moreover, the time-frequency analysis method [Fäh et al., 2009] was used to estimate the
ellipticity function more accurately using the Matlab code of V. Poggi, available in the software
repository of the engineering seismology group of SED. In this method, the time-frequency
analysis using the Wavelet transform is computed for each component. For each frequency, the
maxima over time (10 per minute with at least 0.1 s between each) in the TFA are determined.
The Horizontal to Vertical ratio of amplitudes for each maximum is then computed and statisti-
cal properties for each frequency are derived. A Cosine wavelet with parameter 9 is used. The
mean of the distribution for each frequency is stored. For the sake of comparison, the time-
frequency analysis of Fäh et al. [2001], based on the spectrogram, was also used, as well as the
wavelet-based TFA coded in Geopsy.

The ellipticity extraction using the Capon analysis [Poggi and Fäh, 2010] as well as fun-
damental mode obtained using the wavefield decomposition method [Maranò et al., 2012] (see
section on array analysis) were also performed.

Method Freq. band Win. length Anti-trig. Overlap Smoothing

Standard H/V Geopsy 0.2− 20 Hz 50 s No 50% K&O 80
Standard H/V D. Fäh 0.2− 20 Hz 30 s No 75% -

H/V TFA Geopsy 0.2− 20 Hz Morlet m=8 fi=1 No - -
H/V TFA D. Fäh 0.2− 20 Hz Specgram No - -

H/V TFA V. Poggi 0.2− 20 Hz Cosine wpar=9 No - No

Table 4: Methods and parameters used for the H/V processing.

4.2 Results in the array

H/V curves are consistent for all the recordings (Fig. 4). The fundamental frequency is found
around 0.85 Hz with little variability, probably due to the quality of the recordings, and an
amplitude around 4. Some of the recordings could not be picked (Fig. 4): MAO204, MAO304
and MAO403 (in red on Fig. 4). MAO203 has also a similarly strange behaviour (in orange
on Fig. 4). These points were already noted as problematic concerning their quality in the
previous section. MAO302, MAO303, MAO401, MAO402, MAO404 and MAO405 have lower
peak values compared to the others for an unknown reason (in blue on Fig. 4). Looking at the
horizontal spectra only gives the same picture with points where the peak at is clear 0.85 Hz
and low quality spectra without clear peak. Moreover, all the methods to compute H/V ratios

http://www.geopsy.org
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are compared at the array centre on Fig. 6, in which the classical methods were divided by
√

2
to correct from the Love wave contribution [Fäh et al., 2001]. The classical and TFA methods
match well for the right flank of the peak but the peak value is slightly different for each method.
The 3C FK analysis (Capon method) does not have resolution down to the peak but matches
well at frequencies above 1.3 Hz.

Polarization analysis was performed using the code of Burjánek et al. [2010]. It shows a
weak polarization in a broad frequency range including the fundamental frequency (Fig. 7). It
is therefore difficult to interpret the H/V peak as a 2D or 1D mode.
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Figure 4: H/V spectral ratios (time-frequency analysis code V. Poggi). Red and orange color correspond to points
with low quality recordings, blue curves have lower amplitudes.
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Figure 5: Map of the resonance frequencies (in Hz) within the array (code V. Poggi).
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Figure 6: H/V spectral ratios for point MAO000 using the different codes. Classical methods were divided by
√

2.
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Figure 7: Polarization analysis at point MAO000. Left: Ellipticity (A trough in the ellipticity corresponds to
polarized motion). Right: Strike of the polarization.
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4.3 Results in the whole profile

The resonance frequency at 0.85 Hz can be further seen on all points in the city, even at the
southern edge of the basin (not dominating) (Fig. 8). These results were obtained using the
TFA methods, this peak is not so clear using only the classical H/V. Moreover, secondary peaks
at higher frequencies can be seen for some points like (MTY002 and MTY003)

Figure 8: Map of the resonance frequencies (in Hz) in the city of Martigny.
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5 Array processing

5.1 Processing methods and parameters

The vertical components of the arrays were processed using the FK and the High-resolution
FK analysis [Capon, 1969] using the Geopsy http://www.geopsy.org software. Better
results were obtained using large time windows (300T). The results of computations of both
datasets were merged to estimate the dispersion curves.

Moreover, a 3C array analysis [Fäh et al., 2008] was also performed using the array_tool_3C
software [Poggi and Fäh, 2010]. It allows to derive Rayleigh and Love modes including the
Rayleigh ellipticity. The results of computations of both datasets were merged to estimate the
dispersion curves.

Method Set Freq. band Win. length Anti-trig. Overlap Grid step Grid size # max.

HRFK 1C 1 0.8− 25 Hz 300T No 50% 0.001 0.6 5
HRFK 1C 2 0.8− 25 Hz 300T No 50% 0.001 0.6 5
HRFK 3C 1 0.8− 20 Hz Wav. 10 No 50% 200 3000 5

Tap. 0.2 m/s m/s
HRFK 3C 2 0.8− 20 Hz Wav. 10 No 50% 200 3000 5

Tap. 0.2 m/s m/s

Table 5: Methods and parameters used for the array processing.

5.2 Obtained dispersion curves

The first mode (Rayleigh) in the 1C FK analysis could be picked between 1.45 and 14.5 Hz
(Fig. 9) including its standard deviation. The phase velocities are ranging from 1850 m/s at
1.45 Hz down to 450 m/s at 14.5 Hz. Moreover, a difference of about 10% in velocity can be
noticed between dataset 1 and 2 (dataset 1 faster). It is probably due to lateral variability of the
upper layers. Since roman ruins were found in the central part of the array, the foundation soil
was probably stiffer than the surroundings (external ring of the array). The first Rayleigh higher
mode can also be picked on a short frequency band.

Using the 3C analysis, both fundamental Rayleigh and Love modes can be picked (Fig. 9).
The fundamental Rayleigh mode is similar to the 1C analysis (Fig. 10). It is picked from 1.4
to 20 Hz and the Love mode is picked from 2 to 13 Hz (Fig. 10). The confidence in the low
frequency part of the Love mode is limited.

The comparison (Fig. 11) with the array performed close to the SSMNet dial-up station
SMAV in 2006 [Roten, 2007], with a centre located 1 km towards W, at the basin edge, shows a
different Rayleigh dispersion curve. The strong velocity increase in these curves, corresponding
to the bedrock, is at higher frequency at SMAV, corresponding to a bedrock present at shallower
depth, which is awaited. Moreover, it shows lower velocities in the sediments.

http://www.geopsy.org
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Figure 9: Dispersion curves obtained from the 3C (left) and 1C (top right) array analysis (top: vertical; centre:
radial; bottom: transverse components) and ellipticity from 3C analysis (centre right).
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Figure 10: Picked dispersion curves from 1C and 3C FK methods.
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Figure 11: Comparison between Rayleigh dispersion curves in stations SMAO and SMAV.
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6 Inversion and interpretation

6.1 Inversion

For the inversion, Rayleigh and Love fundamental modes dispersion curves and Rayleigh higher
mode (without standard deviation to avoid different weighting) were used as simultaneous tar-
gets. All curves were resampled using 50 points between 0.6 and 20 Hz in log scale. The higher
mode is considered to be the second higher mode. Inversion of the Love fundamental mode
was limited to the frequency band 8 − 13 Hz, because no model could be found that matches
the picked Love dispersion curve. It can be seen on Fig. 9 that the Love dispersion curve is
smeared at frequencies below 8 Hz, probably due to the fact that fundamental and higher modes
are mixed. The ellipticity was not used in the inversion because of the 2D resonance. It happens
not to be necessary to find the bedrock interface.

The inversion was performed using the Improved Neighborhood Algorithm (NA) Wathelet
[2008] implemented in the Dinver software. In this algorithm, the tuning parameters are the
following: Ns0 is the number of starting models, randomly distributed in the parameter space,
Nr is the the number of best cells considered around these Ns0 models, Ns is the number of
new cells generated in the neighborhood of the Nr cells (Ns/Nr per cell) and Itmax is the
number of iteration of this process. The process ends with Ns0 + Nr ∗ Ns

Nr
∗ Itmax models. The

used parameters are detailed in Tab. 6.

Itmax Ns0 Ns Nr

500 10000 100 100

Table 6: Tuning parameters of Neighborhood Algorithm.

During the inversion process, low velocity zones were not allowed. The Poisson ratio
was inverted in each layer in the range 0.2-0.4, up to 0.47 where the water table may be lo-
cated. The density was supposed equal to 2000 kg/m3 except for the layers assumed to be rock
(2500 kg/m3). Inversions with free layer depths as well as fixed layer depths were performed. 4
layers are enough to explain most of the targets, but more layers are used to smooth the obtained
results and better explore the parameter space. 5 independent runs of 5 different parametriza-
tion schemes (5 and 6 layers over a half space and 11, 13 and 16 layers with fixed depth) were
performed. For further elaborations, the best models of these 25 runs were selected (Fig. 15).

According to the free layer depth inversion, the first layer is 3 m deep with a velocity be-
tween 160 and 200 m/s. The first layer is underlain by a unit with a shear-wave velocity of
700 m/s that extends down to 20 m depth. Below 20 m depth a homogeneous layer with with
Vs between 900 and 1000 m/s is encountered that extends down to an interface located between
220 and 260 m depth, where velocities increase to more than 1500 m/s. The two first velocity
contrasts should create peaks above 10 Hz that cannot be clearly seen in the H/V measurements.
The deepest velocity contrast is producing a peak around 1 Hz. It is consistent with the 2D res-
onance peak (at 0.85 Hz considering that we may not be at the deepest part of the basin) which
would not bring additional valuable information in the inversion. Moreover, the models show a
large peak in the H/V curve at 15 − 20 Hz due to the first 3 m of soft sediments. This peak is
not seen on all the H/V curves indicating it is probably variable across the array.
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When comparing to the target curves (Fig. 13 and Fig. 14), all curves, imposing a heavy
constraint, are well represented. The ellipticity, that is not used in the inversion, makes somehow
sense, except the high frequency peak.

According to Rosselli (2004), who developed a model of the quaternary sediments depth
in the Rhone valley, the bedrock at this site is located at about 100 m depth. However, the
Rhone basin is very deep close to Martigny (down to 900 m), and therefore the bedrock is very
steep. Assuming the bedrock slope is constant below the sediments compared to the surround-
ing slopes (40 ◦), one can estimate that the sediment thickness is about 400 m. The gravimetry
inversion seems therefore unrealistic at this site, maybe due to the level of compaction of the
sediments, which seems quite high. It is not clear whether the inversion of these array measure-
ment was able to resolve the bedrock, but this measurement is not able to provide information
from larger depth. The sediments below 3 m depth can already be considered as rock from the
engineering point of view (compacted gravels?). This site can be compared to the Chur site,
where very stiff sediments were also found (alluvial fan from a mountain river made of grav-
els), despite of a deep sedimentary basin, as well as the Bramois site near Sion [Roten et al.,
2008].
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Figure 12: Inverted ground profiles in terms of Vp and Vs; top: free layer depth strategy; bottom: fixed layer depth
strategy.
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Figure 13: Comparison between inverted models and measured Rayleigh and Love modes and corresponding
ellipticity, free layer depth strategy.
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Figure 14: Comparison between inverted models and measured Rayleigh and Love modes and corresponding
ellipticity, fixed layer depth strategy.
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Figure 15: Vs ground profiles for the selected 25 best models.

6.2 Travel time average velocities and ground type

The distribution of the travel time average velocities at different depths was computed from
the selected models. The uncertainty, computed as the standard deviation of the distribution
of travel time average velocities for the considered models, is also provided, but its meaning
is doubtful. Vs,30 is found to be 570 m/s, meaning the site can be classified as class B in the
Eurocode 8 [CEN, 2004] and SIA261 [SIA, 2003].

6.3 SH transfer function and quarter-wavelength velocity

The quarter-wavelength velocity approach [Joyner et al., 1981] provides, for a given frequency,
the average velocity at a depth corresponding to 1/4 of the wavelength of interest. It is useful
to identify the frequency limits of the experimental data (minimum frequency in dispersion
curves, 1.7 Hz here). The results using this proxy show that no data is controlling the results
below 120 m (Fig. 16). It seems however that the contrast around 250 m is constrained in the
data even though the scatter is large. Moreover, the quarter wavelength impedance-contrast
introduced by Poggi et al. [2012] is also displayed in the figure. It corresponds to the ratio
between two quarter-wavelength average velocities, respectively from the top and the bottom
part of the velocity profile, at a given frequency [Poggi et al., 2012]. It shows a trough (inverse
shows a peak) at the resonance frequency.
Moreover, the theoretical SH-wave transfer function for vertical propagation [Roesset, 1970]
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Mean Uncertainty
(m/s) (m/s)

Vs,5 245 12
Vs,10 349 19
Vs,20 477 12
Vs,30 567 12
Vs,40 631 11
Vs,50 677 11
Vs,100 796 9
Vs,150 849 8
Vs,200 882 8

Table 7: Travel time averages at different depths from the inverted models. Uncertainty is given as one standard
deviation from the selected profiles.

is computed from the inverted profiles. It is compared to the quarter-wavelength amplification
[Joyner et al., 1981], that however cannot take resonances into account (Fig. 17). In this case,
the models are predicting a slight amplification at the 1D resonance frequencies of the site (1, 3,
5 and 7 Hz) increasing with frequency up to a factor of 5 around 15 Hz. This will be compared
to observations at this station.
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Figure 16: Quarter wavelength velocity representation of the velocity profile (top: depth, centre: velocity, bottom:
inverse of the impedance contrast). Black curve is constrained by the dispersion curves, light grey is not constrained

by the data. Red square is corresponding to Vs,30.
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Figure 17: Theoretical SH transfer function (solid line) and quarter wavelength impedance contrast (dashed line)
with their standard deviation. Significance of the greyshades is detailed in Fig. 16.
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7 Conclusions

The single station measurements showed a weak 2D behaviour of the Dranse valley in Martigny
with a fundamental frequency at 0.85 Hz. Therefore, the ellipticity information could not be
used in the array analysis. The array measurements presented in this study were successful in
deriving a velocity model for the site of station SMAO in Martigny. We found only 3 m of soft
sediments, variable across the array, on top on highly consolidated sediments (700 m/s at 20 m
and 1000 m/s at 200 m). An interface around 250 m was found (velocity above 1500 m/s) but
it cannot be assured that is corresponds to the bedrock that could be even deeper considering
the geological and geomorphological indications. Vs,30 is at 570 m/s. The ground type is B for
EC8 and SIA261. The theoretical SH transfer function and impedance contrast of the quarter-
wavelength velocity computed from the inverted profiles show moderate amplifications at low
frequencies increasing with frequency up to a factor of 5 at high frequencies. Recordings of the
new station will allow to validate these simple models.
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