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Abstract

Ambient vibration array measurements were performed to characterize the alluvial fan at site
Sierre Borzuat. This area, where the new station SIEB of the Swiss Strong Motion Network
was installed, underwent high damages during the 1946 earthquake, the most recent damaging
in the Valais region [Fritsche and Fäh, 2009]. In order to characterize the velocity profile under
the station, array measurements with an aperture of 200 m were performed. The measurements
were successful and allowed deriving a velocity model for this site. The soil column underlying
station SIEB displays a strong gradient in the top 20 m, with shear-velocities increasing from
approximately 200 to 1000 m/s. A layer with constant velocity extends down to about 65 m. At
this depth, a clear interface is found, with a velocity of the lower layer around 1500−1700 m/s.
The velocity increases slightly with depth until a velocity contrast at about 200 m depth, which
is interpreted as the sediment-bedrock interface. Vs,30 is equal to 730 m/s, corresponding to
ground type B for EC8 [CEN, 2004] and SIA261 [SIA, 2003], i.e. much firmer than expected
from the official ground type map (class C). The theoretical SH transfer function and impedance
contrast of the quarter-wavelength velocity computed from the inverted profiles show large
amplification at high frequencies (above 10 Hz), and moderate amplification at the fundamental
resonance frequency (2.4 Hz). Recordings of the new station will allow to validate these 1D
models.
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4 1 INTRODUCTION

1 Introduction

The station SIEB (Sierre - Borzuat) is part of the Swiss Strong Motion Network (SSMNet) in
the Valais. SIEB has been newly installed in the framework of the SSMNet Renewal project
in 2012. This project includes also the site characterization. The passive array measurements
have been selected as a standard tool to investigate these sites. Such a measurement campaign
was carried out on 9th August 2012 around the school Borzuat (Fig. 1), with a centre close to
station SIEB, in order to characterize the sediments under this station. The last heavy damaging
earthquake (M close to 6) in Switzerland occurred in Sierre in 1946. Damage was particularly
noticeable in two districts of the city: Beaulieu (array SIDE) and ND des Marais (this study)
[Fritsche and Fäh, 2009]. According to the geological map, this station is located on an alluvial
fan on top of the deep Rhone valley. More precisely, the map indicates a Quaternary colluvial
deposit there. This layer, extremely loose, explains the name of the church located inside the
array "Notre-Dame des Marais" (swamps). This report presents the measurement setup, the
results of the H/V analysis and of the array processing of the surface waves (dispersion curves).
Then, an inversion of these results into velocity profiles is performed. Standard parameters are
derived to evaluate the amplification at this site.

Canton City Location Station code Site type Slope

Valais Sierre Borzuat SIEB Alluvial fan Slight slope

Table 1: Main characteristics of the study-site.

Figure 1: Picture of the site.
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2 Experiment description

2.1 Ambient Vibrations

The ground surface is permanently subjected to ambient vibrations due to:

• natural sources (ocean and large-scale atmospheric phenomena) below 1 Hz,

• local meteorological conditions (wind and rain) at frequencies around 1 Hz ,

• human activities (industrial machines, traffic. . . ) at frequencies above 1 Hz [Bonnefoy-
Claudet et al., 2006].

The objective of the measurements is to record these ambient vibrations and to use their prop-
agation properties to infer the underground structure. First, the polarization of the recorded
waves (H/V ratio) is used to derive the resonance frequencies of the soil column. Second, the
arrival time delays at many different stations are used to derive the velocity of surface waves
at different frequencies (dispersion). The information (H/V, dispersion curves) is then used to
derive the properties of the soil column using an inversion process.

2.2 Equipment

For these measurements 12 Quanterra Q330 dataloggers named NR01 to NR12 and 14 Lennartz
3C 5 s seismometers were available (see Tab. 2). Each datalogger can record on 2 ports A
(channels EH1, EH2, EH3 for Z, N, E directions) and B (channels EH4, EH5, EH6 for Z, N,
E directions). Time synchronization was ensured by GPS. The sensors were placed on a metal
tripod on firm soil or asphalt, ensuring a good coupling with the ground.

Digitizer Model Number Resolution
Quanterra Q330 12 24 bits

Sensor type Model Number Cut-off frequency
Velocimeter Lennartz 3C 14 0.2 Hz

Table 2: Equipment used.

2.3 Geometry of the arrays

The array configuration is made of 3 rings of 20, 50 and 100 m radius around a central station
(14 sensors). The minimum inter-station distance and the aperture are therefore 20 and 200 m.
The experimental setup is displayed in Fig. 2. The final usable dataset is detailed in section 3.2.
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Figure 2: Geometry of the arrays.

2.4 Positioning of the stations

The sensor coordinates were measured using a differential GPS device (Leica Viva GS10),
including only a rover station and using the Real Time Kinematic technique provided by Swis-
stopo. It allowed an absolute positioning with an accuracy better than 5 cm on the Swissgrid
except for points SIE203 and SIE303 with a precision of 20 and 27 cm, respectively. This
precision was assumed sufficient for this processing. Moreover, point SIE304 was located by
measuring 3 m East from its actual position using compass and measuring tape, which means
that its actual precision is in the order of 10 cm.
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3 Data quality

3.1 Usable data

The largest time windows were extracted, for which all the sensors of the array were correctly
placed and the GPS synchronization was ensured. The array was limited in size by the main
road in the South, where the traffic was not negligible. A light wind was blowing during the
measurements. GPS measurements were not performed during the recordings to avoid addi-
tional noise. Few cars crossed the array during the recordings.

The north-alignment of the sensors was double-checked by maximizing the correlation with
the central station at low frequencies (between 1 and 3 Hz here) [Poggi et al., 2012b]. Deviation
of 21 ◦ was found for SIE204 and around ±10 ◦ at points SIE103, SIE202, SIE205, SIE301 and
SIE305. Original and rotated datasets are available for the array analysis.

The spectra show that points SIE302 has a particularly high noise level in the Vertical and
East directions compared to the other points due to the road in the South. Moreover, horizontal
directions of point SIE303 are amplified above 3 Hz with peaks at 3.4, 4.4 and 7.8 Hz due to
the fact that the point was located on a retaining wall. This point may be removed from future
analysis, even though it was used for the analysis described in this report.

The characteristics of the datasets are detailed in Tab. 3.

3.2 Data processing

The data were first converted to SAC format including header entries for the point coordinates
(CH1903 system), the recording component and a name related to the position. The name is
made of 3 letters characterizing the location (SIE here), 1 digit for the ring and 2 more digits
for the number in the ring. Recordings were not corrected for instrumental response.

Dataset Starting Date Time Length Fs Min. inter-distance Aperture # of points

1 2012/08/09 12:15 123 min 200Hz 20m 200m 14

Table 3: Usable datasets.
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4 H/V processing

4.1 Processing method and parameters

In order to process the H/V spectral ratios, several codes and methods were used. The classical
H/V method was applied using the Geopsy http://www.geopsy.org software. In this
method, the ratio of the smoothed Fourier Transform of selected time windows are averaged.
Tukey windows (cosine taper of 5% width) of 50 s long overlapping by 50% were selected. The
Konno and Ohmachi [1998] smoothing procedure was used with a b value of 80. The classical
method computed using the method of Fäh et al. [2001] was also performed.

Moreover, the time-frequency analysis method [Fäh et al., 2009] was used to estimate the
ellipticity function more accurately using the Matlab code of V. Poggi, available in the software
repository of the engineering seismology group of SED. In this method, the time-frequency
analysis using the Wavelet transform is computed for each component. For each frequency, the
maxima over time (10 per minute with at least 0.1 s between each) in the TFA are determined.
The Horizontal to Vertical ratio of amplitudes for each maximum is then computed and statisti-
cal properties for each frequency are derived. A Cosine wavelet with parameter 9 is used. The
mean of the distribution for each frequency is stored. For the sake of comparison, the time-
frequency analysis of Fäh et al. [2001], based on the spectrogram, was also used, as well as the
wavelet-based TFA coded in Geopsy.

The ellipticity extraction using the Capon analysis [Poggi and Fäh, 2010] (see section on
array analysis) were also performed.

Method Freq. band Win. length Anti-trig. Overlap Smoothing

Standard H/V Geopsy 0.2− 20 Hz 50 s No 50% K&O 80
Standard H/V D. Fäh 0.2− 20 Hz 30 s No 75% -

H/V TFA Geopsy 0.2− 20 Hz Morlet m=8 fi=1 No - -
H/V TFA D. Fäh 0.2− 20 Hz Specgram No - -

H/V TFA V. Poggi 0.2− 20 Hz Cosine wpar=9 No - 2D MA 10

Table 4: Methods and parameters used for the H/V processing.

4.2 Results

The curves have similar shapes without clear peak (Fig. 4). As explained before, SIE303,
located on a retaining wall, provides irrelevant results. All H/V curves show a bump with a
peak frequency around 0.6 − 0.7 Hz that could be related to the wind that was blowing during
the measurement or to a deep and weak contrast. Station XSID1, installed during a week
in a transformer house close to the centre of the array, shows a tiny peak at 0.7 Hz and an
unclear peak at 2.4 Hz. In the array data, an unclear peak also appears around 2.7 Hz, with little
variability that may not be significant. Moreover, Fritsche and Fäh [2009] made an extensive
H/V study in Sierre. They generally recognize two peaks in the spectra, one below 1 Hz and one
above. It is doubtful whether the first peak can be recognized in the measurements presented
here, since wind may hide the informations at these frequencies. However, the second peak

http://www.geopsy.org
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corresponds to the values found here. Fig. 5 shows all the available H/V data (second peak)
available in the zone.

All the methods to compute H/V ratios are compared at the array centre on Fig. 6, in which
the classical methods were divided by

√
2 to correct from the Love wave contribution [Fäh et al.,

2001]. The small peak is then clearer, with some small differences among the methods. The 3C
FK analysis (Capon method) does not have resolution down to the peak, but provides similar
results.

The peak at the SIEB station is therefore at 2.4 Hz, with a small peak amplitude (around 2)
and another vey small frequency peak at 0.7 Hz. This last peak may be due to the Rhone basin
2D/3D resonance [Fritsche and Fäh, 2009]. However, no particular polarization of the ground
motion was observed.

Figure 3: H/V spectral ratios on a long term recording at station XSID1, located close to the array centre
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Figure 4: H/V spectral ratios (time-frequency analysis code V. Poggi).

Figure 5: Map of all available H/V frequency peak (second peak) in the area, including points from Fritsche and
Fäh [2009].
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Figure 6: H/V spectral ratios for point SIE000 using the different codes. Classical methods were divided by
√

2.
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5 Array processing

5.1 Processing methods and parameters

The vertical components of the arrays were processed using the FK and the High-resolution
FK analysis [Capon, 1969] using the Geopsy http://www.geopsy.org software. Better
results were obtained using large time windows (300T). The results of computations of both
datasets were merged to estimate the dispersion curves.

Moreover, a 3C array analysis [Fäh et al., 2008] was also performed using the array_tool_3C
software [Poggi and Fäh, 2010]. It allows to derive Rayleigh and Love modes including the
Rayleigh ellipticity. The results of computations of both datasets were merged to estimate the
dispersion curves.

Method Set Freq. band Win. length Anti-trig. Overlap Grid step Grid size # max.

HRFK 1C 1 1.5− 30 Hz 300T No 50% 0.001 0.6 5
HRFK 3C 1 1.5− 25 Hz Wav. 10 No 50% 300 3000 5

Tap. 0.2 m/s m/s

Table 5: Methods and parameters used for the array processing.

5.2 Obtained dispersion curves

The first mode (Rayleigh) in the 1C FK analysis could be picked between 3 and 15 Hz (Fig. 7)
including its standard deviation. The dispersion curve can be followed below the lower array
limit thanks to the Capon technique. The velocities are ranging from 2000 m/s at 3 Hz down to
860 m/s at 15 Hz. The first upper mode can also be partially picked.

Using the 3C analysis, both fundamental Rayleigh and Love modes can be picked (Fig. 7).
Phase velocity of the fundamental mode of Rayleigh wave identified from the 3C analysis shows
little difference with respect to the phase velocity picked from 1C analysis (Fig. 8). Rayleigh
fundamental mode is picked from 3.4 to 14.6 Hz and Love from 2.8 to 12.7 Hz (Fig. 8).

Another array was performed at site SIDE in 2007 [Fritsche and Fäh, 2009], with a centre
located 900 m towards SW (Fig. 9). SIDE and SIEB arrays were performed in the two dis-
tricts of the city with the most extensive damage in 1946 (Beaulieu and ND des Marais). The
fundamental and first higher Rayleigh and Love modes are available, even though Fritsche and
Fäh [2009] did not interpret them. The comparison of Rayleigh and Love fundamental disper-
sion curves with these measurements (Fig. 10) shows a shift in the frequencies and velocities
indicating probably a difference in the depth and velocities of the considered interface. Veloc-
ities seems lower at SIDE, even though the dispersion curves are available only on a narrow
frequency range. Only an inversion of these curves would allow a comparison of these two
sites.

http://www.geopsy.org
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Figure 7: Dispersion curves obtained from the 3C (left) and 1C (right) array analysis (top: vertical, centre: radial,
bottom: transverse) and ellipticity from the 3C analysis (centre left).
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Figure 8: Dispersion curves obtained with the different methods.
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Figure 9: Location of the SIEB and the SIDE arrays in Sierre.
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Figure 10: Comparison of the fundamental Rayleigh and Love modes at SIDE array and this study for SIEB station.



15

6 Inversion and interpretation

6.1 Inversion

For the inversion, dispersion curves of the Rayleigh and Love fundamental and Rayleigh first
higher modes, as well as the ellipticity of Rayleigh waves and the ellipticity peak were used as
simultaneous targets. No standard deviation was used to avoid different weighting. The results
from the 3C FK analysis were used except for the upper Rayleigh mode, where the 1C results
were chosen. A weight of 0.05 was assigned to the ellipticity curve and 0.1 to the ellipticity
peak at 2.4 Hz. All curves were resampled using 50 points between 1 and 20 Hz in log scale.
The 0.7 Hz peak may be due to the Rhone basin 2D/3D resonance and was therefore not used
[Fritsche and Fäh, 2009].

The inversion was performed using the Improved Neighborhood Algorithm (NA) Wathelet
[2008] implemented in the Dinver software. In this algorithm, the tuning parameters are the
following: Ns0 is the number of starting models, randomly distributed in the parameter space,
Nr is the the number of best cells considered around these Ns0 models, Ns is the number of
new cells generated in the neighborhood of the Nr cells (Ns/Nr per cell) and Itmax is the
number of iteration of this process. The process ends with Ns0 + Nr ∗ Ns

Nr
∗ Itmax models. The

used parameters are detailed in Tab. 6.

Itmax Ns0 Ns Nr

500 10000 100 100

Table 6: Tuning parameters of Neighborhood Algorithm.

During the inversion process, low velocity zones were not allowed. The Poisson ratio was
inverted in each layer in the range 0.2-0.4, up to 0.47 below the possible water table. The density
was supposed equal to 2000 kg/m3 except for the layers assumed to be rock (2500 kg/m3).
Inversions with free layer depths as well as fixed layer depths were performed. 4 layers are
enough to explain most of the targets (dispersion and ellipticity), but more layers are used to
smooth the obtained results and better explore the parameter space. 5 independent runs of 5
different parametrization schemes (5 and 6 layers over a half space and 11, 13 and 16 layers
with fixed depth) were performed. For further elaborations, the best models of these 25 runs
were selected (Fig. 14).

On the first 20 m, a gradual increase in the shear-wave velocity is found from low velocities
(200 − 300 m/s, badly constrained) to 1000 m/s at 20 m depth. This layer extends down to
approximately 65 m with a constant velocity. At this depth, a clear interface is found, with a
velocity of the lower layer around 1500− 1700 m/s. The velocity increases slightly with depth
until what is supposed to be the bedrock. Using the free depth strategy, the bedrock needs to
be around 180 − 200 m depth, whereas the fixed layer depth does not need this interface, but
can simply go deeper with the same structure. The bedrock velocity (3000 m/s) is not trusted.
According to Rosselli, the bedrock depth in the region is around 200 m but the accuracy is poor.

When comparing to the target curves (Fig. 12 and Fig. 13), all curves are well represented.
Even though the interface at 65 m is producing a peak around 2.5 Hz, the layers below are
needed to fit the data.
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Figure 11: Inverted ground profiles in terms of Vp and Vs; top: free layer depth strategy; bottom: fixed layer depth
strategy.
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Figure 12: Comparison between inverted models and measured Rayleigh and Love modes and corresponding
ellipticity, free layer depth strategy.
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Figure 13: Comparison between inverted models and measured Rayleigh and Love modes and corresponding
ellipticity, fixed layer depth strategy.
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Figure 14: Vs ground profiles for the selected 25 best models.

6.2 Travel time average velocities and ground type

The distribution of the travel time average velocities at different depths was computed from
the selected models. The uncertainty, computed as the standard deviation of the distribution of
travel time average velocities for the considered models, is also provided, but its meaning is
doubtful. Vs,30 is found to be around 730 m/s, meaning the site can be classified as class B in
the Eurocode 8 [CEN, 2004] and SIA261 [SIA, 2003]. For class E, the upper soft layer is not
thick enough (less than 5 m). According to the map of ground types from the Federal Office for
Environment (http://map.bafu.admin.ch), this site is located on site class C (SIA261).
It shows once more that the shear wave velocities of alluvial fans are much underestimated.

6.3 SH transfer function and quarter-wavelength velocity

The quarter-wavelength velocity approach [Joyner et al., 1981] provides, for a given frequency,
the average velocity at a depth corresponding to 1/4 of the wavelength of interest. It is use-
ful to identify the frequency limits of the experimental data (minimum frequency in ellipticity
- 2.5 Hz - and dispersion curves - 2.8 Hz). The results using this proxy show that no data is
controlling the results below 100 m, and the dispersion curves are constraining the results down
to 80 m (Fig. 15). It explains why the velocity is well constrained even below the 65 m inter-
face. Moreover, the quarter wavelength impedance-contrast introduced by Poggi et al. [2012a]
is also displayed in the figure. It corresponds to the ratio between two quarter-wavelength aver-
age velocities, respectively from the top and the bottom part of the velocity profile, at a given

http://map.bafu.admin.ch
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Mean Uncertainty
(m/s) (m/s)

Vs,5 378 42
Vs,10 492 45
Vs,20 639 32
Vs,30 726 29
Vs,40 780 27
Vs,50 818 25
Vs,100 1015 13
Vs,150 1166 13
Vs,200 - -

Table 7: Travel time averages at different depths from the inverted models. Uncertainty is given as one standard
deviation from the selected profiles.

frequency [Poggi et al., 2012a]. It shows a trough (inverse shows a peak) at the resonance fre-
quency.
Moreover, the theoretical SH-wave transfer function for vertical propagation [Roesset, 1970]
is computed from the inverted profiles. It is compared to the quarter-wavelength amplification
[Joyner et al., 1981], that however cannot take resonances into account (Fig. 16). In this case,
the models are predicting an amplification up to a factor of 4-5 above 10 Hz, but only 2-3 at the
resonance frequencies (2.4 and 4.7 Hz). This will be compared to observations at this station.
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Figure 15: Quarter wavelength velocity representation of the velocity profile (top: depth, centre: velocity, bottom:
inverse of the impedance contrast). Black curve is constrained by the dispersion curves, light grey is not constrained

by the data. Red square is corresponding to Vs,30.
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Figure 16: Theoretical SH transfer function (solid line) and quarter wavelength impedance contrast (dashed line)
with their standard deviation. Significance of the greyshades is detailed in Fig. 15.
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7 Conclusions

The array measurements presented in this study were successful in deriving a velocity model
for the Borzuat site in Sierre, below the SIEB station. On the first 20 m, a strong gradient in the
velocity is found from 200−300 m/s to 1000 m/s at 20 m depth. A layer with constant velocity
extends down to approximately 65 m. At this depth, a clear interface is found, with a velocity
of the lower layer around 1500 − 1700 m/s. The velocity increases slightly with depth until a
velocity contrast at 200 m depth, which is interpreted as the sediment-bedrock interface. Vs,30

is equal to 730 m/s, corresponding to ground type B for EC8 and SIA261, i.e. much firmer
than expected from the official ground type map (class C). The theoretical SH transfer function
and impedance contrast of the quarter-wavelength velocity computed from the inverted profiles
show large amplification at high frequencies (above 10 Hz), and moderate amplification at the
fundamental resonance frequency (2.4 Hz). Recordings of the new station will allow to validate
these simple models.
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