Otterbach: Bestimmung eines Wellengeschwindigkeitsprofils

Standort: Geothermie Bohrung Otternbach, Basel Stadt
Seismische Station: SM OTTER und Bohrlochseismometer
Methode: Arraymessungen, Inversion kombiniert mit H/V
Datum: November 2004
Messung durch: Hans-Balder Havenith
Auswertung durch: Donat Fäh, Hans-Balder Havenith
Geologische Daten: Erich Fäh (Bohrkataster BS /BL)
Dokumente: SASW Messungen durch Bureau de Recherche Geologique et Miniere
(BRGM), Kontakt: Agathe Roulle
Seismische Messungen durch Geowissenschaftliche Gemeinschaftsaufgaben
Hannover (GGA), Kontakt: Ulrich Polom
Files und Daten: /mercalli/project/interreg3/Array_measurement/Otterbach

Mächtigkeit (m)	Vp (m/s)	Vs (m/s)	Kommentar / Geologie	
5	< 1350	190-250	Deckschicht unregelmässig	
15	> 1350	Gradient	Niederterrassenschotter (Kies, Sand),	
		400-500	z.T. verkittet und mit Nagelfluhbildung,	
		bis	im Grundwasser.	
		550-600	Dichte: 1850 g/cm ³	
30	1500-2500	550-600	Melettaschichten (Härteklasse 1)	
			Dichte: 2000 g/cm ³	
100	1700-2500	650-750	Melettaschichten (Härteklasse 1)	
135	1900-2500	900-1200	Melettaschichten (Härteklasse 1)	
200	3400 ^B	2000 ^B	Geophysikalischer Fels, Sannoisien. D	
	(3200-3600)	(1800-2000)	lithologische Schicht innerhalb des	
			Sannoisien ist entweder ein	
			Kalkkonglomerat oder ein harter	
			Kalkstein. Beide besitzen die	
			Härteklasse 4.	
			Dichte: 2350 g/cm ³	
	4000 ^B	2350 ^B	Dichte: 2550 g/cm^3	
	(3600-4500)	(2150-2650)		

Tabelle: Vorgeschlagenes vereinfachtes Geschwindigkeitsmodell am Standort Otterbach. Die Mächtigkeit der Lockersedimente (Niederterassenschotter und Melettaschichten) ist gemäss Bohrlochinformation ca. 285 m. Aufgrund der gemessenen Geschwindigkeiten entspricht der Standort einer Bodenklasse C oder E nach SIA261.^B) Die Geschwindigkeiten in den tiefsten Schichten wurden mit Hilfe von Bohrlochmessungen erhalten (GPI, 2001).

Geologie

Die obersten Schichten bestehen aus den Niederterrassenschottern des Rheins. An dieser Stelle verzahnen sie sich mit den Schottern der Wiese. Die Niederterrassenschotter des Rheins weisen wechselnde Schichtungen mit unterschiedlichen Korngrössen auf. Die Schotter können sandig oder sandfrei sein, besitzen Einschaltungen von Sandlinsen und Bändern und können zu

Nagelfluhbänken verkitten. Im unteren Teil, in welchem die Schotter zum geologischen Fels übergehen, nimmt der Lehmanteil zu und kann z.T. die Schotter ganz ersetzen. Die Wiesenschotter bestehen aus Granitgesteinen des Schwarzwaldes, sowie dem Bundsandstein, welcher aber selten vorkommt. Häufig sind Sandlagen zu finden. Die Niederterrassenschotter dienen als Grundwasserspeicher.

Unter den Schottern befinden sich die Meletta Schichten. Es sind dies graublaue, glimmerführende Tone, welche mergelige Sandlagen besitzen. Die Härteklassierung der Meletta Schichten beträgt 1. Diese Klassierung, welche im Interreg Projekt eingeführt wurde, kann Werte zwischen 1 (weiches Gestein, wie z.B. Ton) und 5 (sehr hartes Gestein wie z.B. Granit) annehmen.

Das Schichtverzeichnis ist im Appendix A gegeben. Es wurde durch die Geothermiebohrung in Otterbach erhalten. Die Instrumente sind direkt im oder neben dem Bohrloch installiert.

Der Grundwasserspiegel liegt bei 248 m ü.M., in 4.6m Tiefe. Referenz: Bohrkataster BS /BL

Abbildung 1. Oberflächengeologie beim Array Otterbach.

Messungen der Eigenfrequenz der Lockersediment-Ablagerungen

Abbildung 2 zeigt die Lage des Arrays bei der Geotermiebohrung Otterbach. Ein H/V Spektrum an der zentralen Station des Arrays ist in Abbildung 3 gezeigt und verglichen mit der H/V Kurve am Standort der Starkbebenstation. Erwartungsgemäss sind die H/V Kurven sehr ähnlich.

Abbildung 2. Angewandte Arraygeometrie in Otterbach (rote Punkte). Zwischen den violetten Punkten wurde ein seismisches Profil durch das Leibniz Institut für angewandte Geowissenschaften in Hannover (GGA) gemessen, bei den rosa Quadraten wurde vom BRGM mit der SASW Methode gemessen. Radius des äusseren Rings : 100m. Das Bohrloch "Otterbach" und somit die Lage der Starkbebenstation ist als oranger Punkt gezeigt.

Abbildung 3. Resultat der H/V Polarisationsanalyse bei der zentralen Array Station bei Otterbach (rot) verglichen mit dem Standort der Starkbebenstation Otterbach (blau: klassische Methode; grün: Frequenz-Zeit Analyse).

Die Stabilität der H/V Kurven in der Umgebung des Bohrlochs Otterbach wird durch die H/V Analyse an verschiedenen Stationen im Array bestätigt (Abbildung 4).

Array-Zentrum

Ring4 Station Nord 180°

Abbildung 4. Resultat der H/V Polarisationsanalyse der Stationen im Array Otterbach.

Inversion mit Einstationsmethode

Nicht ausgeführt.

Arraymessung

Die Dispersionskurven wurden durch die Maxima im Frequenz-Wellenzahl-Spektrum definiert; die Phasengeschwindigkeit nimmt allerdings nicht stetig mit zunehmender Frequenz zu, sondern weist leichte Schwankungen auf. Die Resultate der vier Konfigurationen wurden zu einer kombinierten Dispersionskurve zusammengefügt (Abbildung 5). Die Resultate der F-K Analyse für die Arraykonfigurationen ist in Appendix B gegeben.

Wenn die gemessene Dispersionskurve alleine invertiert wird, ergibt sich als Lösung das Modell in Abbildung 6. Die alleinige Inversion der Dispersionskurven erlaubt keine Bestimmung der Mächtigkeit der Lockersedimente. Dies wird durch eine kombinierte Inversion der Phasengeschwindigkeit und der H/V Kurve erreicht.

Abbildung 5. Gemessene Dispersionskurve. Es wurden hier nur die vertikalen Komponenten des Arrays analysiert.

Abbildung 6. Gemessene Dispersionskurven und daraus invertierte Modelle bei Otterbach. Die roten Bereiche zeigen die am besten passenden Modelle, wenn nur mit Hilfe der Dispersionkurve invertiert wird. Es wurde ein Modell mit drei Schichten angenommen. Für diese Analyse wurde die Software CAP und SESARRAY verwendet, welche innerhalb des SESAME Projekts entwickelt wurde (Ohrnberger, 2004; Wathelet, 2005).

Kombinierte Inversion mit Hilfe der Phasengeschwindigkeit und Elliptizität

Die Ergebnisse der kombinierten Inversion sind in Abbildung 7 und 8 gezeigt (Inversion nach Fäh et al., 2001, 2003). Die Inversionen erfolgten mit unterschiedlicher Gewichtung der Dispersionskurve und H/V Kurve in den verschiedenen Frequenzbereichen. Die Anpassungen an die gemessenen Kurven ist in Abbildung 7 gezeigt. Dabei werden folgende Strukturen unterschieden:

- a) Blaue Kurven: Berücksichtigung der gemessenen Phasengeschwindigkeit; Berücksichtigung der beiden Flanken der H/V Kurve. Fixierung der Mächtigkeit der Lockersedimente (285m: Grenze Sannoisien) aufgrund der Bohrungsergebnisse bei der Geothermiebohrung Otterbach.
- b) Rote Kurven: Berücksichtigung der gemessenen Phasengeschwindigkeit; Berücksichtigung der beiden Flanken der H/V Kurve.

An der Oberfläche befindet sich eine Schicht von ca. 5m Mächtigkeit mit einer mittleren S-Wellengeschwindigkeit von 190-250 m/s. Die zweite Schicht wird durch Niederterrassenschotter ausgemacht, bestehend aus Kies und Sand, welche z.T. zu Nagelfluhbänken verkittet sind. Die Mächtigkeit ist ca. 15m und die S-Wellengeschwindigkeiten nehmen mit der Tiefe zu, von 400-500m/s auf 550-600m/s in einer Tiefe von ca. 20m. Der Grundwasserspiegel liegt in ca. 5m Tiefe. Im Tiefenbereich von ca. 20 bis 50m ist der geologische Fels erreicht (Melettaschichten, Härteklasse 1).

In Abbildung 8 sind die Ergebnisse der Inversion gezeigt. Die bevorzugten Modelle (blau: Fixierung der Mächtigkeit der Lockersedimente auf 285m) ergeben an der Oberfläche eine Schicht von ca. 5 m Mächtigkeit mit einer mittleren S-Wellengeschwindigkeit von 190-250 m/s. Die zweite Schicht wird durch Niederterrassenschotter ausgemacht, bestehend aus Kies und Sand, welche z.T. zu Nagelfluhbänken verkittet sind. Die Mächtigkeit ist ca. 15 m und die S-Wellengeschwindigkeiten nehmen mit der Tiefe zu, von 400-500 m/s auf 550-600 m/s in einer Tiefe von ca. 20 m. Der Grundwasserspiegel liegt in ca. 5 m Tiefe. Im Tiefenbereich von ca. 20 bis 50 m ist der geologische Fels erreicht (Melettaschichten, Härteklasse 1). Die mittlere S-Wellengeschwindigkeit weist Werte im Bereich 550-600 m/s auf.

Abbildung 7. Anpassung der Phasengeschwindigkeit (oben) an die gemessenen Werte und der Elliptizität (unten) der Rayleighwellen an das H/V Spektrum am Standort Otterbach.

Abbildung 8. Invertierte S-Wellenprofile. Die blauen Strukturen entsprechen den bevorzugten Modellen, da bei der Inversion die Mächtigkeit der Sedimente auf 285m fixiert wurde.

Mit zunehmender Tiefe ab ca. 50m nimmt die mittlere Geschwindigkeit zu. Sie beträgt 650-750m/s für den Tiefenbereich zwischen 50 und 150m. In grösseren Tiefen ab ca.150m steigt die mittlere S-Wellengeschwindigkeit auf 900 bis 1200 m/s an. In ca. 285m Tiefe wird der kompakte Fels erreicht. Die mittleren S-Wellengeschwindigkeiten betragen hier 2000m/s (1800-2200m/s) in den ersten 200m, dann 2350m/s (2150 –2650m/s) in den tieferliegenden Formationen. Drei der gefundenen Strukturen sind im Appendix C gegeben (blaue Kurven in Abbildung 8, mit geringer S-Wellengeschwindigkeit in der ersten Schicht).

Andere Messungen am Standort oder in ähnlichen Strukturen

Abbildung 9. Im Bohrloch der Geothermie-Bohrung Otterbach wurden in einem Tiefenbereich zwischen 300 und 650m Sonic-Log-Messungen durchgeführt (GPI, 2001). Die gezeigten tieferen Werte sind S-Wellengeschwindigkeiten, die höheren P-Wellengeschwindigkeiten. Vertikale Linien zeigen mittlere Werte (GPI, 2001).

Vergleich der Arrayresultate mit den seismischen Messungen (GGA) und den SASW Messungen (BRGM)

Ungefähr am selben Standort wurden Messungen durch das BRGM mit der SASW-Methode, und durch das GGA mit S-Wellen Reflexions- und Refraktionsseismik durchgeführt. Die Messstandorte sind in Abbildung 2 gezeigt. Dabei wurden mögliche Modelle für den Standort bestimmt. Ein Vergleich der verschiedenen invertierten Strukturen ist in Abbildung 10 gezeigt. Die Resultate zeigen eine gute Uebereinstimmung zwischen SASW und Arraymessungen für die Niederterrassenschotter. Die mittleren S-Wellengeschwindigkeiten sind innerhalb der

Messfehler vergleichbar. Der Vergleich mit der Seismik zeigt, dass die Werte aus der Seismik im allgemeinen an der unteren Grenze der Arraymessungen liegen.

Der Vergleich der Array-Messungen mit den SASW Messungen des BRGM beim Bohrloch Otterbach (Abb.11, s. Lokalisierung in Abbildung 2) zeigt, dass diese Messungen komplementär sind (Array Messungen geben Information über die Dispersion im niedrigen Frequenzbereich, die SASW im höheren Frequenzbereich). Ausserdem stimmen die Resultate bei der Überschneidung (12Hz – 400 m/s) gut überein.

Mögliche Modelle, die diese kombinierte Dispersionskurve (Array-Vs-SASWNS) erklären können, sind in Abbildung 11b gegeben. Sie zeigen, dass die Vs-Geschwindigkeit zuerst von 300m/s auf 600m/s ansteigt, der starke Anstieg bei 80 m Tiefe ist an der Grenze der auflösbaren Tiefe.

3

2.5

2

[s/m/s] vs

1

0.5

Array Otterbach: SED(b,r), BRGM (black), GGA(m) 0 ^L 0 0.05 0.1 0.15 0.2 0.25 0.3 Depth [km] Array Otterbach: SED(b,r), BRGM (black), GGA(m)

Abbildung 10. Vergleich der Strukturen, welche mit Hilfe der Arraymessungen (blau, rot), der SASW Methode (schwarz) und seismischen Messungen gewonnen wurden (violett).

a)

Otterbach : Array - SASW

Abbildung 11. Vergleich der Arraymessungen mit den SASW Messung (a) und Resultat der Inversion mit der kombinierten Dispersionskurve (b).

Referenzen

- Bitterli-Brunner, P. et al.: Geologischer Atlas der Schweiz, Blatt 1067, Arlesheim, mit Erläuterungen. Schweizerische geologische Kommission, Bern, 1984.
- Fäh, D., Rüttener, E., Noack, T. and Kruspan, P., 1997. Microzonation of the city of Basel. Journal of Seismology, 1, 87-102.
- Fäh, D., Noack, T. und Kruspan, P., 1997. Bewertung des geologischen Untergrundes der Region Basel Stadt auf die seismische Erschütterungsfähigkeit. In: D. Mayer-Rosa et al. (Ed.), Erdbebengefährdung und Mikrozonierung in der Schweiz, VdF, Schlussbericht NFP31, 55-67.
- Fäh, D., Kind, F. and D. Giardini, 2001. A theoretical investigation of average H/V ratios. Geophysical Journal Int., 145, 535- 549.
- Fäh, D., Kind, F., Giardini, D., 2003. Inversion of local S-wave velocity structures from average H/V ratios, and their use for the estimation of site-effects. Journal of Seismology, 7, 449-467.
- GPI Basel, 2001. Bohrloch Otterbach II. Geologisch-Paläontologisches Institut (GPI) der Universität Basel, unveröffentlichte Daten.
- Gürler, B. et al.: Geologie der Umgebung von Basel, mit Hinweisen über die Nutzungsmöglichkeiten der Erdwärme. 1987, 43pp, Bern.
- Kind, F., 2002. Development of Microzonation Methods: Application to Basle, Switzerland. PhD Thesis Nr. 14548, ETH Zuerich.
- Kind, F., Fäh, D., Giardini, D., 2004. Array measurements of S-wave velocities from ambient vibrations. Geophysical Journal Int., 160, 114-126.
- Noack, T., Kruspan, T., Fäh, D. and Rüttener, E., 1997. Seismic microzonation of the city of Basel (Switzerland) based on geological and geotechnical data and numerical simulations. Eclogea Geol. Helv., 90, 433-448.
- Ohrnberger M., 2004. User manual for software package CAP a continuous array processing toolkit for ambient vibration array analysis. SESAME report D18.06, 83pp (http://sesamefp5.obs.ujf-grenoble.fr).
- Wathelet, M., 2005. Array recordings of ambient vibrations: surface-wave inversion. Liège University (Belgium), 177 pages.

Appendix A: Schichtverzeichnis aus Bohrlochinformationen

Profil Otterbach

Bohrung: Koordinaten: Ansatzhöhe:			BS - 9.H.1490 612430.00 / 269685.00 252.61 m ü.M.			
Grundwasserspiegel:			248 m ü. M.			
0.00	bis	18.00	Quartär:	Rheinschotter		
18.00	bis	273.60	Oligocaen:	Meletta-Schichten / Septarienton (Blauer Letten)		
273.60) bis	281.00		Fischschiefer / Fischschiefer		
281.00) bis	290.50		Foraminiferenmergel / Foraminiferen- Mergel		
290.50) bis	311.00		Meeressand / Meeressand		
311.00) bis	464.90		Bunte Mergel (Haustein) / Bunte Mergel		
464.90) bis	499.20	Eocaen:	Siderolithikum / Siderolithikum		
499.20) bis	523.60	Malm:	Verena-Oolith / Verena-Schichten		
523.60) bis	551.10		Humeralis-Schichten / Humeralis- und Natica-Schichten		
551.10) bis	662.50		Vorbourg-Kalke / Vorbourg- Kalke/Rauracien Korallenkalke		
662.50) bis	699.10		Liesberg Schichten / Liesberg-Schichten		
699.10) bis	741.70		Terrain à Chailles / Oxford-Mergel		
741.70) bis	819.10		Renggeri-Tone / Renggeri-Ton		
819.10) bis	825.20	Dogger:	Dalle Nacrée / Dalle nacrée		
825.20) bis	831.30		Callovienton / Callovien-Ton		
831.30 Macro) bis cephalu	837.10 s-		Macrocephalus-Schichten /		
837.10) bis	841.00		/Varians-Schichten Ferrugineus-Oolith / Ferrugineus-Oolith		

841.00 bis	868.90		Oberer Hauptrogenstein / Oberer Hauptrogenstein
868.90 bis	875.20		Homomyenmergel / Homomyen-Mergel
875.20 bis	943.50		Unterer Hauptrogenstein / Unterer Hauptrogenstein
943.50 bis	1025.20		Unterer Dogger / "Unterer Dogger"
1025.20 bis	1178.20		Opalinus-Ton / Opalinuston
1178.20 bis	1192.80	Lias:	/ Jurensismergel - Obtususton
1192.80 bis	1198.70		/ Arietenkalk
1198.70 bis	1207.10		/ Héttangien
1207.10 bis	1210.40	ob. Keuper:	Rhät / Rhät
1210.40 bis Mergel	1238.50	mittl. Keuper:	Obere Bunte Mergel / Obere Bunte
1238.50 bis	1250.50		Gansinger Dolomit / Gansinger-Dolomit
1250.50 bis Mergel	1262.40		Untere Bunte Mergel / Untere Bunte
1262.40 bis	1295.40		Schilfsandstein / Schilfsandstein-Gruppe
1295.40 bis	1414.70		Gipskeuper / Gipskeuper
1414.70 bis	1419.50	unt. Keuper:	Lettenkohle / Lettenkohle
1419.50 bis	1424.70		Estherienschiefer / Estherienschiefer
1424.70 bis Dolomit	1445.90	ob. Muka.:	Trigonodus-Dolomit / Trigonodus-
1445.90 bis	1471.10		Hauptmuschelkalk / Nodosuskalk
1471.10 bis	1506.90		Hauptmuschelkalk / Trochitenkalk
1506.90 bis	1540.40	mittl. Muka.:	Anhydritgruppe / Dolomit der Anhydritgruppe
1540.40 bis	1547.50		Obere Sulfatzone / Obere Sulfatzone
1547.50 bis	1583.20		Salzlager / Salz 1

19.05.2006

1583.20 bis	1593.30		Salzlager / Keine Angaben!
1593.30 bis	1616.30		Salzlager / Salz 2
1616.30 bis	1645.60		Salzlager / Keine Angaben!
1645.60 bis	1648.20		Salzlager / Salz 3
1648.20 bis	1662.80		Salzlager / Keine Angaben!
1662.80 bis	1722.50		Salzlager / Salz 4
1722.50 bis	1729.70	unt. Muka.:	Orbicularis-Mergel / Orbicuarismergel
1729.70 bis	1762.70		Wellenkalk / Wellenmergel
1762.70 bis	1772.90		Wellendolomit / Wellendolomit
1772.90 bis Rötton	1775.00	ob. Bunds.:	Röt-Folge / Oberer Buntsandstein /
1775.00 bis	1791.10		Buntsandstein / Plattensandsteine
1791.10 bis	1794.20		Buntsandstein / Karneolhorizont
1794.20 bis	1834.80	Buntsandsteir	n / Mittlerer/ Unterer Buntsandstein
1834.80 bis	2002.70	Rotliegendes	/ Oberes Ober-Rotliegend
2002.70 bis	2037.30	Rotliegendes	/ Kristallinbrekzien Serie
2037.30 bis	2305.10	Rotliegendes	/ Mittleres Ober-Rotliegend (Playa)
2305.10 bis	2639.40	Rotliegendes	/ Unteres Ober-Rotliegend
2639.40 bis	2648.30	Karbon / Verv	witterungszone Kristallin
2648.30 bis	2745.20	Karbon / Kris	tallines Grundgebirge

Appendix B: F-K Analyse für die Arraykonfigurationen

Abbildung B.2. : F-K Analyse und Dispersionskurve für Ring mit 20 m Radius.

Abbildung B.3. : F-K Analyse und Dispersionskurve für Ring mit 50 m Radius.

Abbildung B.4. : F-K Analyse und Dispersionskurve für Ring mit 100 m Radius.

Appendix C: Mögliche Strukturen am Standort Otterbach

Die hier gegebenen Strukturen entsprechen blauen Strukturen in Abbildung 8.

Struktur Nr.11

THICKNESS	DENSITY	P-WAVE	P-WAVE	S-WAVE	S-WAVE
		VELOCITY	ATTENUATION	VELOCITY	ATTENUATION
THKNES(I)	RHO(I)	A1(I)	A2(I)	B1(I)	B2(I)
0.74778E-02	0.18000E+01	0.12007E+01	0.41643E-02	0.24667E+00	0.40540E-01
0.21999E-01	0.19000E+01	0.14412E+01	0.34693E-02	0.58987E+00	0.16953E-01
0.28998E-01	0.19000E+01	0.15768E+01	0.31709E-02	0.55574E+00	0.17994E-01
0.20141E-01	0.20000E+01	0.18969E+01	0.26359E-02	0.56935E+00	0.17564E-01
0.30313E-01	0.22000E+01	0.31231E+01	0.16010E-02	0.65204E+00	0.15337E-01
0.36341E-01	0.22000E+01	0.37357E+01	0.13384E-02	0.73582E+00	0.13590E-01
0.13973E+00	0.23000E+01	0.43988E+01	0.11367E-02	0.98945E+00	0.10107E-01
0.18024E+00	0.23000E+01	0.44944E+01	0.66750E-03	0.19490E+01	0.51307E-02
	0.23000E+01	0.46497E+01	0.64521E-03	0.21944E+01	0.45570E-02

Struktur Nr.15

1						
	THICKNESS	DENSITY	P-WAVE	P-WAVE	S-WAVE	S-WAVE
			VELOCITY	ATTENUATION	VELOCITY	ATTENUATION
	THKNES(I)	RHO(I)	A1(I)	A2(I)	B1(I)	B2(I)
	0.52497E-02	0.18000E+01	0.12650E+01	0.39527E-02	0.18746E+00	0.53343E-01
	0.22555E-01	0.19000E+01	0.16325E+01	0.30629E-02	0.58927E+00	0.16970E-01
	0.10657E-01	0.19000E+01	0.17560E+01	0.28473E-02	0.49490E+00	0.20206E-01
	0.13307E-01	0.20000E+01	0.25361E+01	0.19715E-02	0.56975E+00	0.17552E-01
	0.64576E-01	0.22000E+01	0.26006E+01	0.19226E-02	0.73572E+00	0.13592E-01
	0.64078E-01	0.22000E+01	0.28052E+01	0.17824E-02	0.73788E+00	0.13552E-01
	0.10458E+00	0.23000E+01	0.39604E+01	0.12625E-02	0.10998E+01	0.90924E-02
	0.18040E+00	0.23000E+01	0.44954E+01	0.66735E-03	0.19996E+01	0.50011E-02
	0.99206E+00	0.23000E+01	0.46496E+01	0.64521E-03	0.22663E+01	0.44125E-02

Struktur Nr.17

THICKNESS	DENSITY	P-WAVE	P-WAVE	S-WAVE	S-WAVE
		VELOCITY	ATTENUATION	VELOCITY	ATTENUATION
THKNES(I)	RHO(I)	A1(I)	A2(I)	B1(I)	B2(I)
0.45939E-02	0.18000E+01	0.12951E+01	0.38607E-02	0.17999E+00	0.55560E-01
0.60150E-02	0.19000E+01	0.16993E+01	0.29424E-02	0.42424E+00	0.23571E-01
0.50027E-02	0.19000E+01	0.17998E+01	0.27780E-02	0.49488E+00	0.20207E-01
0.41103E-01	0.20000E+01	0.34997E+01	0.14287E-02	0.56936E+00	0.17564E-01
0.74903E-01	0.22000E+01	0.36985E+01	0.13519E-02	0.66025E+00	0.15146E-01
0.49372E-01	0.22000E+01	0.38985E+01	0.12825E-02	0.73002E+00	0.13698E-01
0.10401E+00	0.23000E+01	0.43997E+01	0.11364E-02	0.14000E+01	0.71429E-02
0.18026E+00	0.23000E+01	0.44994E+01	0.66676E-03	0.20000E+01	0.50000E-02
0.99979E+00	0.23000E+01	0.46500E+01	0.64517E-03	0.23000E+01	0.43479E-02

24