swiss*nuclear*: PEGASOS Refinement Project: SP2 – Ground Motion Characterization

Contract no. PMT-VT-1032

Seismic Shear Wave Velocity Determination and Hybrid Seismic Surveying at 20 Swiss Seismological Service Stations in Switzerland

Field Data Acquisition Period from 11th December 2008 until 18th June 2009

Summary Report

Client

swiss*nuclear*

Project PRP Frohburgstrasse 17 4601 Olten

Contractor

GeoExpert ag Seismic Prospecting Oberfeldstrasse 6 8514 Amlikon-Bissegg

8603 Schwerzenbach, 24th July 2009

INDEX

	PRE	EAMBLE	3
		List of terms and abbreviations	3
1	INT	RODUCTION	5
	1.1	Survey objectives	5
	1.2	Methodology	5
	1.3	The choice of the appropriate surveying methods	10
2	FIE	LD DATA ACQUISITION PARTICULARS	11
	2.1	Time Schedule and Region's Information	11
	2.2	Summary of Data Acquisition Parameters	12
	2.3	Composition of Seismic Field Crew	13
	2.4	Location	14
	2.5	Recording Conditions and Line Setup	15
-	051		
3	SEI	SMIC DATA PROCESSING AND IMAGING OF THE RESULTS	16
3	3.1	General Remarks	-
3	_		16
3	3.1	General Remarks	16 17
3	3.1 3.2	General Remarks MASW Processing	
3	3.1 3.2 3.3	General Remarks MASW Processing Seismic Refraction Tomography	
3	3.1 3.2 3.3 3.4	General Remarks MASW Processing Seismic Refraction Tomography Reflection Seismic Data Processing	
3	3.1 3.2 3.3 3.4 3.5	General Remarks MASW Processing Seismic Refraction Tomography Reflection Seismic Data Processing Summary of the results of MASW surveying	
3	3.1 3.2 3.3 3.4 3.5 3.6 3.7	General Remarks MASW Processing Seismic Refraction Tomography Reflection Seismic Data Processing Summary of the results of MASW surveying Summary of the results of shear wave refraction tomography	
	3.1 3.2 3.3 3.4 3.5 3.6 3.7 ERI	General Remarks MASW Processing Seismic Refraction Tomography Reflection Seismic Data Processing Summary of the results of MASW surveying Summary of the results of shear wave refraction tomography Summary of the results of compressional wave refraction tomography	

APPENDICES: DETAILED REPORT FOR EACH SURVEY

PREAMBLE

List of terms and abbreviations

Naming	
SN SED GE SED station profile naming	<pre>swissnuclear as part of Swisselectric, the originating party Schweizerischer Erdbebendienst/Swiss Seismological Service GeoExpert ag, contractor Seismological monitoring station, operated by the SED 09SN_17TORNY-S1 =</pre>
Methods	
MASW surveying	Multichannel Analysis of Surface Waves;
refraction seismic surveying	see sub-section 3.2 on page 17 Acquisition and processing of critically refracted seismic waves;
reflection seismic surveying	see sub-section 3.3 on page 22 Acquisition and processing of reflected seismic waves; see sub-section 3.4 on page 27
Parameters	
seismic p-wave velocity (v _p)	Propagation velocity of compressional waves in rock material with: $K = Bulk \mod u $ (= modulus of incompressibility) $\mu = shear \mod u $ (= modulus of rigidity) $\rho = density$
seismic s-wave velocity $(v_{\mbox{\scriptsize s}})$	
acoustic impedance (Z)	Product of seismic p-wave propagation velocity (v _p) and rock/soil density (ρ); $Z = v_p \times \rho$ the proportion of Z's of two layers is a measure of reflectivity
average velocity (vav)	The mean velocity between surface and a particular depth is calculated by $v_{av} = z/t$ with: $z = depth$
velocity scalar v _{s,n}	$t = \text{travel time of seismic wave} \\ \text{to depth } z \\ \text{The scalar value } v_{s,30} \text{ denotes the mean shear wave velocity} \\ \text{between the surface to a depth of } n = 30 \text{ meters}; \\ \text{with: } d_i = \text{ thickness of layer i} \\ v_{si} = \frac{\sum_{i=1}^{n} d_i}{\sum_{i=1}^{n} d_i / v_{si}} \\ \text{velocity.} \\ ve$

Field Te	rms
----------	-----

source geophone	Impulse device which generates controlled seismic energy in form of acoustic shock waves. Sources may be of the impact type as explosive charges, hammer blows, weight droppers and air guns. More sophisticated source types are vibrators which generate frequency and amplitude encoded source sig- nals of a certain duration. In this project, hammer blows are used for generating both shear and compressional waves. Device which converts ground movement (displacement) into voltage signals, which may be recorded at a receiver station. The deviation of the measured voltage values from the base line is called the seismic response and is analyzed for struc- ture of the earth. In this project, analog horizontal (for shear wave detection) and vertical (for compressional shear wave
A/D converter	detection) geophones are used. Analog to digital converter, device for converting analog (voltage) signals recorded by the geophones into digital values for data storage and processing purposes.
array	Linear (1D) or areal (2D) lay-out arrangement of receiver sta- tions
offset	Distance between the seismic source point and a particular re- ceiver station
profile station profile meter	Position of a particular geophone station on the seismic profile Count of meters along the seismic profile; generally profile sta- tion \equiv profile meter (with 1 m station spacing)
x-t domain	2-dimensional plane in which seismic data are presented; the horizontal x-axis represents the profile distance along the surface, the vertical t-axis denotes the travel time of seismic signals.
Processing Terms	
Processing Terms first break (FB) time	Manually or automatically determined traveltime of first seis- mic event from source to receiver; for near offset receivers, that is a direct wave traveling through the uppermost soil; for far offset receivers, that is normally a refracted wave; first break times are detectable for different wave types such as body waves (compressional and transverse waves) and with lower accuracy for surface waves
-	mic event from source to receiver; for near offset receivers, that is a direct wave traveling through the uppermost soil; for far offset receivers, that is normally a refracted wave; first break times are detectable for different wave types such as body waves (compressional and transverse waves) and with lower accuracy for surface waves. Two Way Time; time it takes for a seismic (source) signal gen- erated at the surface to travel to the depth of a reflector or re-
first break (FB) time	mic event from source to receiver; for near offset receivers, that is a direct wave traveling through the uppermost soil; for far offset receivers, that is normally a refracted wave; first break times are detectable for different wave types such as body waves (compressional and transverse waves) and with lower accuracy for surface waves. Two Way Time; time it takes for a seismic (source) signal gen- erated at the surface to travel to the depth of a reflector or re- fractor and back to the surface Common Depth Point / Common Mid Point
first break (FB) time	mic event from source to receiver; for near offset receivers, that is a direct wave traveling through the uppermost soil; for far offset receivers, that is normally a refracted wave; first break times are detectable for different wave types such as body waves (compressional and transverse waves) and with lower accuracy for surface waves. Two Way Time; time it takes for a seismic (source) signal gen- erated at the surface to travel to the depth of a reflector or re- fractor and back to the surface Common Depth Point / Common Mid Point for horizontally layered formations $CDP \equiv CMP$ Normal Move Out correction, travel time correction for the ho- rizontal alignment of reflection events situated on a reflection
first break (FB) time TWT CDP / CMP	mic event from source to receiver; for near offset receivers, that is a direct wave traveling through the uppermost soil; for far offset receivers, that is normally a refracted wave; first break times are detectable for different wave types such as body waves (compressional and transverse waves) and with lower accuracy for surface waves. Two Way Time; time it takes for a seismic (source) signal gen- erated at the surface to travel to the depth of a reflector or re- fractor and back to the surface Common Depth Point / Common Mid Point for horizontally layered formations CDP \equiv CMP Normal Move Out correction, travel time correction for the ho-
first break (FB) time TWT CDP / CMP NMO	mic event from source to receiver; for near offset receivers, that is a direct wave traveling through the uppermost soil; for far offset receivers, that is normally a refracted wave; first break times are detectable for different wave types such as body waves (compressional and transverse waves) and with lower accuracy for surface waves. Two Way Time; time it takes for a seismic (source) signal gen- erated at the surface to travel to the depth of a reflector or re- fractor and back to the surface Common Depth Point / Common Mid Point for horizontally layered formations CDP \equiv CMP Normal Move Out correction, travel time correction for the ho- rizontal alignment of reflection events situated on a reflection hyperbola in the x-t domain. Root Mean Square, a statistical measure of the magnitude of
first break (FB) time TWT CDP / CMP NMO RMS	mic event from source to receiver; for near offset receivers, that is a direct wave traveling through the uppermost soil; for far offset receivers, that is normally a refracted wave; first break times are detectable for different wave types such as body waves (compressional and transverse waves) and with lower accuracy for surface waves. Two Way Time; time it takes for a seismic (source) signal generated at the surface to travel to the depth of a reflector or refractor and back to the surface Common Depth Point / Common Mid Point for horizontally layered formations $CDP = CMP$ Normal Move Out correction, travel time correction for the horizontal alignment of reflection events situated on a reflection hyperbola in the x-t domain. Root Mean Square, a statistical measure of the magnitude of varying quantity.
first break (FB) time TWT CDP / CMP NMO RMS Interpretation Specifics	mic event from source to receiver; for near offset receivers, that is a direct wave traveling through the uppermost soil; for far offset receivers, that is normally a refracted wave; first break times are detectable for different wave types such as body waves (compressional and transverse waves) and with lower accuracy for surface waves. Two Way Time; time it takes for a seismic (source) signal generated at the surface to travel to the depth of a reflector or refractor and back to the surface Common Depth Point / Common Mid Point for horizontally layered formations $CDP \equiv CMP$ Normal Move Out correction, travel time correction for the horizontal alignment of reflection events situated on a reflection hyperbola in the x-t domain. Root Mean Square, a statistical measure of the magnitude of varying quantity.

1 INTRODUCTION

1.1 Survey objectives

The seismic survey's main task is to determine the distribution function of the shear wave velocities in the depth interval of the uppermost 30 m along 100 m long seismic profiles.

Additionally, the following objectives are to be met:

- the mapping of the topography of the rock face, i.e. the thickness of the Quaternary deposits;
- the determination of the thickness of the weathered zone and its degree of decompaction at the bedrock surface;
- a general view of geological structures.

1.2 Methodology

Seismic waves are acoustic signals traveling in elastic rock material. They can be divided in the two groups of a) body waves (compressional and transverse or shear waves) and b) surfaces waves (Rayleigh and Love waves). The body waves are traditionally used to map the rock density and elastic properties as well as structural inhomogeneities in the subsurface. Surface waves, until recently rated as unavoidable self generated noise and having been treated as such, have seen a revival, because their information content can now be extracted thanks to the advances in modern data acquisition and processing tools. The analysis of the amplitude spectra of surface waves of the Rayleigh type provides a fairly accurate measure of the shear wave velocity distribution in the depth range between 5 m and 100 m.

This summary of the selected surveying methods gives an overview over the applied seismic methods for meeting the survey objectives. Please refer to the detailed processing description further below (chapter 3).

1.2.1 Multichannel analysis of surface waves (MASW)

In multichannel analysis of surfaces waves, the two basic facts that a) surfaces waves are dispersive and b) the surface wave velocity depends on shear wave velocity are used to derive a shear wave velocity section.

Dispersion is the phenomenon in which the phase velocity of a seismic event depends on the frequencies contained in the signal. A rainbow is a familiar example of dispersion. A plot of phase velocities vs. frequency (so called dispersion image resp. dispersion curves when frequencies are allocated to specific phase velocities) allows to get conclusions about the subsurface shear wave velocity field. In a geological setting, the velocities normally increase with increasing depth, so the velocity effect of lower frequencies allows velocity calculation on greater depth.

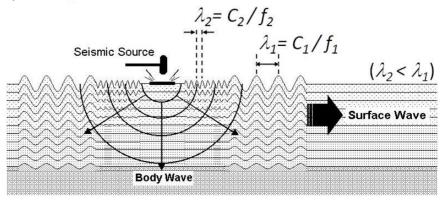


Fig. 1.2a: Schematic image of source-generated surface waves with wavelength λ in relation to the phase velocity c and the frequency f. (image from www.masw.com)

The basis for the inversion process is the assumption that s-wave velocities fundamentally control changes in Rayleigh-wave phase velocities for a layered earth model. Poisson's ratio, density and p-wave velocity have a reduced ascendancy on the phase velocities. The complete inversion algorithm can be found in Xia et al. (1999).

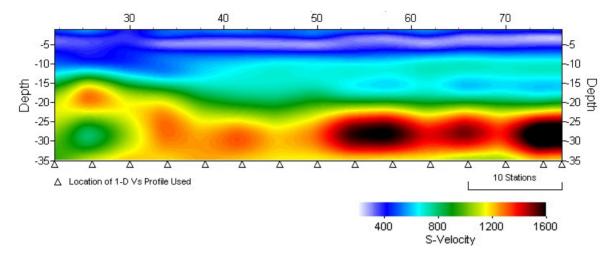


Fig. 1.2b: MASW-processed shear wave velocity fields as the result of surface wave analysis.

1.2.2 Refraction seismic surveying

In analogy with the laws in optics that govern the refraction of rays of light at the boundaries between two layers with differing propagation velocities of light (Snell's Law, Fig. 1.2c), seismic rays with an angle of incidence greater than the critical angle from the vertical cannot penetrate the layer below, resulting in the total refraction of the ray at the layer boundary. The totally refracted seismic wave then travels along the surface of the hard layer and continuously emits part of its signal back to the earth's surface.

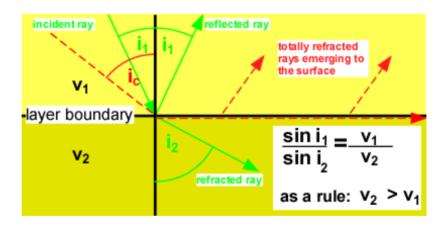
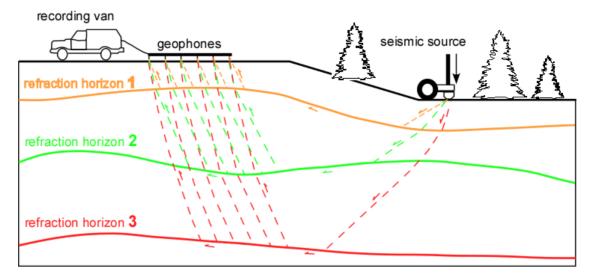



Fig. 1.2c: Reflection and refraction of seismic raypath at the interface between a soft layer above a hard layer below. The raypath with the angle of incidence i₁ at the interface is deflected from the vertical at a larger angle i₂ from the vertical when it enters the hard layer below with the higher velocity v₂. As the angle of incidence i₁ approaches the critical angle i_c the angle of emergence i₂ becomes 90° with the result that the seismic wave is totally refracted and cannot penetrate the layer below.

Fig. 1.2d portrays the trajectory of the wave paths of the seismic source signal in the sub-surface. Depending on the ray's angle of incidence with the interface, part of the acoustic energy travels as a totally refracted wave along the interface boundary and continuously emits energy back to the surface.

GeoExpert ag

Fig. 1.2d: The field set-up and the ray paths trajectories of a refraction survey.

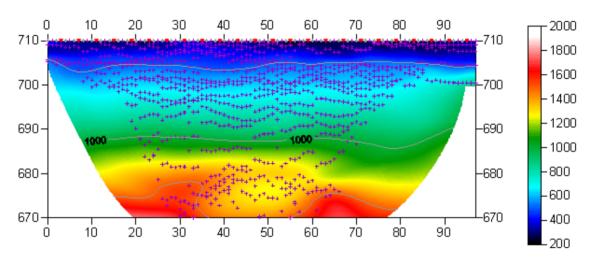


Fig. 1.2e: The seismic velocity section as a result of a refraction seismic survey.

1.2.3 Reflection seismic surveying

The underlying principle in reflection seismic profiling is identical with the one with the echo sounder on a ship: A source signal generated at the surface penetrates the ground in a vertical or near vertical direction. At layer boundaries, i.e. at interfaces of velocity contrasts, the signal is reflected back to the surface – like in the case with the signal of the echo sounding device at the sea bottom. Unlike the echo sounding technique, where the transmitter and the receiver are assembled into one unit at the ship's bottom, in seismic reflection surveys there is an arrangement of a large number of receivers (geophones) which record the signal emitted from a single source position (see Fig. 1.2f).

The recording arrangement consists of a number of geophone stations laid out at regular, equidistant spacings with the source point usually in the middle – or moving along the geophone layout – of the spread. As with refraction seismic tomography, the seismic source may be of an impact type (hammer, weight dropper) or explosives fired in shallow boreholes.

In this manner, reflection points on layer boundaries at various depths in the subsurface are sampled by a multitude of transmitter-receiver configurations resulting in a so-called multiple coverage of seismograms at each reflection point position.

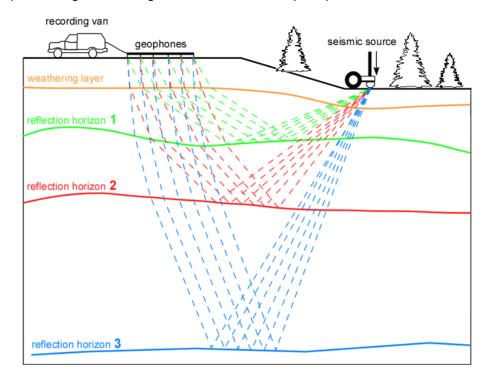


Fig. 1.2f: Schematic presentation of the seismic reflection geometry of ray paths.

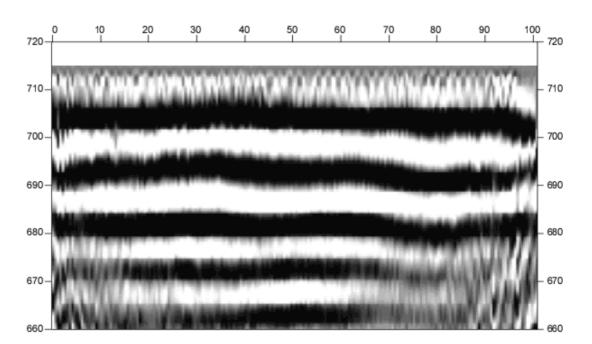


Fig 1.2g The seismic depth section as the result of reflection surveying images the reflectivity of subsurface structures.

1.2.4 Hybrid seismic sections

Reflection seismic profiling as well as refraction diving wave tomography, when applied as the sole prospection methods, have their undisputed merits in their performance, but unfortunately also some shortcomings, depending on the objectives of each individual survey, as outlined in the table below.

Comparative performance summary of refraction tomography surveying and high resolution reflection seismic profiling

	Reflection seismic profiling	Refraction diving wave tomography
High resolution at shallow depths (< 10 m)	LIMITED	GOOD
High resolution at greater depths (> 20 m)	GOOD	LIMITED
Depth of investigation	HIGH	LIMITED
Rock / soil quality indicator & rippability	POOR	GOOD
Detection of velocity inversions	POOR	GOOD
Fault zone indicator	GOOD	LIMITED

Tab. 1.2: Comparison of advantages and drawbacks of seismic p-wave methods.

As an obvious conclusion from the above comparison of the capabilities of the two methods, it is desirable to combine their data acquisition and interpretation procedures.

Although the results of the reflection seismic data processing and the refraction tomography evaluation are based on the same data set, they are completely independent from each other, which enhances the reliability of a joint interpretation. The latter is further assisted by a suitable presentation of two results whereby the drawbacks of one method are compensated by benefits of the other.

An effective direct and comparative correlation is obtained by transparently superimposing the seismic velocity gradient field derived from refraction tomography onto the reflection seismic depth section (see Fig. 1.2f).

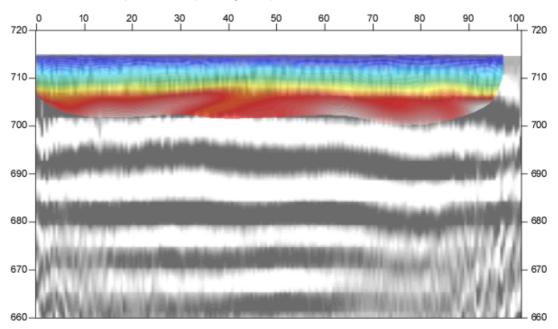


Fig. 1.2h The hybrid seismic section as the result of combined refraction and reflection seismic surveys.

1.3 The choice of the appropriate surveying methods

Several methods are available for deriving the s-wave velocity distribution in the subsurface at any given position:

- in-situ measurement by down-hole or crosshole seismic surveying;
- shear-wave refraction tomography profiling;
- dispersion analysis of surface waves (MASW; Multichannel Analysis of Surface Waves)

The surveys are to be carried out at, or as close as possible near some 20 SED earth quake monitoring stations in Switzerland. Ideally, the surveys are to be conducted on two orthogonal profiles in order to derive at their point of intersection a robust 1D s-wave velocity distribution function by correlation. To this end, the methods of MASW and shear-wave refraction tomography profiling are to be combined.

The results are to include the following fundamental parameters $v_{s,5}$, $v_{s,10}$, $v_{s,20}$, $v_{s,30}$, $v_{s,40}$, $v_{s,50}$, $v_{s,100}$ are to be calculated, also an error estimation of all values.

The data acquired for the MASW method are to be subjected to complementary **p-wave hybrid seismic data processing** in order to image the geological structures.

2 FIELD DATA ACQUISITION PARTICULARS

2.1 Time Schedule and Region's Information

At 20 SED earthquake monitoring stations in the Swiss Alps, the Prealps, the Foreland Basin and the Jura Range, seismic surveys have been done to obtain the seismic shear wave velocities.

Survey		Date of		Date of	#	profile	s	
No.	Name	Canton	Region	Geological Unit	Fieldwork	P*	S*	M*
1	ACB	AG	Jura	Tabled Jura	03.03.09	2	2	2
2	AIGLE	VD	Prealps	Penninikum	07.04.09	2	2	2
3	BALST	So	Jura	Folded Jura	06.05.09	2	2	2
4	BNALP	NW	Alps	Helvetikum	10.06.09	2	2	2
5	BOURR	JU	Jura	Folded Jura	18.12.08	1	1	1
6	BRANT	NE	Jura	Folded Jura	19.05.09	2	2	2
7	FLACH	SH	Foreland	OMM/USM	03.02.09	2	1	2
8	GIMEL	VD	Jura	Folded Jura	18.05.09	2	2	2
9	HASLI	BE	Alps	Helvetikum	23.04.09	2	2	2
10	LLS	GL	Alps	Parautochthon	30.03.09	1	1	1
11	MUO	SZ	Alps	Helvetikum	18.06.09	2	2	2
12	PLONS	SG	Alps	Helvetikum	14.05.09	2	2	2
13	SKEH	OW	Alps	Helvetikum	20.03.09	2	2	2
14	SLE	SH	Jura	Tabled Jura	11.12.08	1	1	1
15	STEIN	SH	Foreland	OSM	07.05.09	2	2	2
16	SULZ	AG	Jura	Tabled Jura	15.12.08	2	1	2
17	TORNY	FR	Foreland	Quaternary/OMM	06.04.09	2	2	2
18	WEIN	TG	Foreland	Quaternary/OSM	04.03.09	2	2	2
19	WILA	ZH	Foreland	OSM	15.04.09	2	2	2
20	WIMIS	BE	Prealps	Penninikum	24.04.09	2	2	2

* P: p-wave refraction/reflection survey; S: s-wave refraction/reflection survey; M: MASW survey.

Tab. 2.1 Summary information about the SED Station positioning and the seismic surveys.

Fig. 2.1: S-wave data acquisition at SED station WIMIS. In front of the motorized wheel-barrow the seismic shear wave source with steely spikes for fixation at ground.

2.2 Summary of Data Acquisition Parameters

2.2.1 Compressional wave data acquisition

of active channels 96 4.5 Hz natural frequency, vertical velocimeter geophone type mainly 1.0 m; @ LLS & WIMIS: 1.5 m receiver station spacing # of geophones/station 1 source point spacing 2.0 m to 3.0 m source type vertical hammer (8 kg) striking on a horizontal metal plate sampling rate 500 µs recording time 2048 ms field filters 0.5 Hz LC, anti-alias # of field records / profile ~ 48

2.2.2 Shear wave data acquisition

# of active channels	48
geophone type	10 Hz natural frequency, horizontal velocimeter
receiver station spacing	mainly 2.0 m;
	@ LLS & WIMIS: 3.0 m
# of geophones/station	1
source point spacing	4.0 m to 6.0 m
source type	mainly horizontal hammer (8 kg) striking horizontally at a metal-plated wooden beam anchored to the ground by means of 20 cm long spikes @ LLS & WIMIS: horizontal strike against solid rock
sampling rate	500 μs
recording time	512 ms
field filters	2 Hz LC, anti-alias
# of field records / profile	~ 48

Fig. 2.2: Man-powered p-wave data acquisition at SED station TORNY striking the metal plate (left in the pasture) with the 8 kg hammer. The backpack contains the radio link for trigger signal.

2.3 Composition of Seismic Field Crew

2.3.1 Personnel

Lorenz Keller	dipl. sc. nat. ETHZ, geophysicist; party chief
Walter Frei	dipl. sc. nat. ETHZ, geophysicist; party chief
Jochen Fiseli	dipl. sc. geol., University of Freiburg i. Br., geologist, party chief
Philippe Corboz	dipl. sc. nat. ETHZ, geophysicist, party chief.
Dieter Martin	dipl. sc. geol., University of Freiburg i. Br., geologist, observer, assistant
Kieron Lynch	assistant, spread lay-out and activation of seismic source
Fabian Isler	assistant, spread lay-out and activation of seismic source
Christoph Brander	assistant, spread lay-out and activation of seismic source
Volker Fink	assistant, spread lay-out and activation of seismic source

2.3.2 Equipment

- 96 vertical geophones 4.5 Hz
- 48 horizontal geophones 12 Hz
- 6 seismic cables
- 1 seismic acquisition system Summit Compact, 96 channels
- 1 laptop computer for data acquisition
- 3 walkie-talkies
- 1 hammer 8 kg
- 1 steel plate
- 1 metal-plated wooden beam
- 1 motorized wheel barrow
- 1 van (FIAT Ducato 4x4)

Fig. 2.3: Improvisational seismic data registration in the gallery at SED station LLS. The yellow boxes in the foreground contains 24 channel A/D converter each. The sensors (yellow case in the middle foreground) are firmly plugged in small holes drilled into the concrete foundation of the gallery's bottom. In the background the cabinets with the earthquake monitoring station instrumentation.

2.4 Location

The 20 earthquake monitoring stations are spread all over Switzerland, north of the alpine main ridge. 7 surveys were carried out in the Jura range, 5 in the sediments of the foreland basin, 3 in the prealps and 3 in the alps.

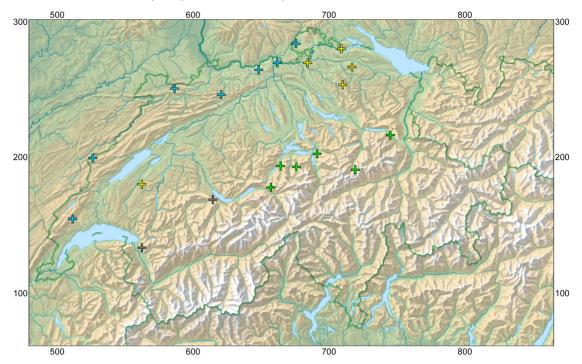


Fig. 2.4: The red crosses mark the 20 seismic monitoring stations. In blue: Jura range; in yellow: foreland basin; in gray: prealps (Penninikum); in green: alps (mostly Helvetikum). (map: geodata @ swisstopo).

Fig. 2.5: S-wave source transportation along the seismic profile at SED station AIGLE.

No.	Name	Weather conditions	Observed noise	Seismic data quality	Remark
1	ACB	cold, drizzle	-	fair – good	-
2	AIGLE	warm, dry	construction work	fair	-
3	BALST	warm, dry	unknown source*	good	karstified geology
		warm, dry	-	good	rough terrain*
5	BOURR	frozen, 30 cm snow	-	fair – good	-
6	BRANT	warm, dry	-	excellent	above cave?*
7	FLACH	warm, dry	-	good	rough terrain*
8	GIMEL	warm, dry	-	good	-
9	HASLI	cold, dry, partly snow	air traffic*	fair – good	rough terrain*
10	LLS	-	-	good	in gallery
11	MUO	warm, dry	air traffic*	good	above galleries
12	PLONS	warm, dry	-	good	complex geology*
13	SKEH	cold, dry, windy	construction work	deficient – fair	nearest to buildings
14	SLE	frozen, 20 cm snow	-	good	-
15	STEIN	warm, dry	mowing work*	fair – good	complex geology
16	SULZ	frozen, 20 cm snow	-	good – excellent	-
17	TORNY	warm, dry	-	excellent	-
18	WEIN	cold, drizzle	-	good	rough terrain*
19	WILA	warm, dry	-	good – excellent	rough terrain*
20	WIMIS	warm, dry	-	fair – good	-

2.5 Recording Conditions and Line Setup

* only on one single profile

Tab. 2.2: Conditions and seismic data quality of all surveys.

Fig. 2.6: Geophone lay-out and monitoring car at SED station SULZ.

3 SEISMIC DATA PROCESSING AND IMAGING OF THE RESULTS

3.1 General Remarks

3.1.1 Software

- For the shear and compressional wave refraction seismic evaluation the packages RAY-FRACT by Intelligent Resources Ltd., Vancouver CAN, was used. The system features the technique of diving wave tomography (www.rayfract.com).
- The system **SPW** (Seismic Processing Workshop) of Parallel Geoscience Corporation, Austin US-TX, was used for reflection seismic data processing (www.parallelgeo.com).
- Data processing of surface waves (MASW processing) was conducted with the software package SurfSeis V2.0 of Kansas Geological Survey in Lawrence US-KS.

3.1.2 Personnel

Lorenz Keller, dipl. sc. nat. ETHZ, geophysicist Jochen Fiseli, dipl. sc. geol. Univ. Freiburg i.Br. Philippe Corboz, dipl. sc. nat. ETHZ, geophysicist Philippe Corboz, dipl. sc. nat. ETHZ, geophysicist

3.1.3 About detailed results of each survey

Please refer to the respective station reports in appendices for detailed information about field observations, results and interpretations.

The following description of processing steps gives an overview of processing history illustrated by the data set of line 09SN_17TORNY-1.

3.2 MASW Processing

3.2.1 Data conditioning

The data preparation steps for the dispersion analysis include

- the assignment of the field acquisition geometry
- the selection of suitable offset ranges (=arrays) for dispersion analyzes, and the splitting of the field records in forward and reverse shooting direction data sets
- the reformatting of the data into the specific KGS format

X - - ... - - **o-o-o-** (forward shooting or so-called PLUS direction) respectively

o-o-o-...-o-o-o - - ... - - X (reverse shooting or so-called MINUS direction).

where **X** = shot position

- o = receiver station
- = 1.0 m offset

The active array used for MASW analyzes normally spread over 10 to 50 m shot-receiver offset and one all-over array for each direction and profile.

In some rare cases, the seismic data are muted, i.e. top mute (to blank refraction events) or surgical mute (aerial noise from external sources)

3.2.2 Dispersion analysis

3.2.2.1 Calculation of dispersion image

The dispersion of surface waves describes the correlation between frequency and the respective phase velocity. The algorithm is based on a wavefield transformation from offset-time (x,t) domain into phase velocity-frequency (C_{I} -f) domain (Park et al., 1999). For each array – as well of both profiles as of both processing directions – containing maximal traces in the offset selection the dispersion is computed. The result of dispersion analysis is the color encoded acoustic energy distribution in the phase velocity - frequency plane (see Fig. 3.3a).

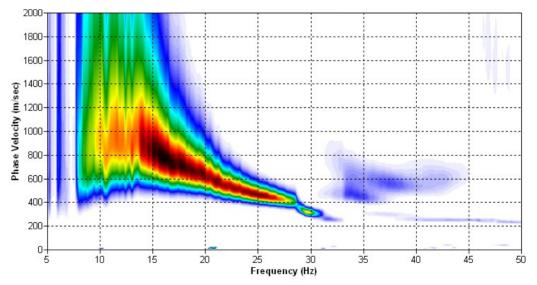


Fig. 3.2a: Dispersion image as the result of dispersion analysis of an 40-m-array. horizontal axis: frequency [Hz]; vertical axis: phase velocity; color code: amplitude of dispersion [%], from white = 0% over blue = 20%, green = 50%, yellow = 70 % and red = 80 % to black = 100 %.

3.2.2.2 Analysis of the dispersion image

In the dispersion image as calculated in section 3.3.2 above, the curves joining the amplitude peaks of the fundamental modes are determined either by subjective inspection or in a semi-automated manner.

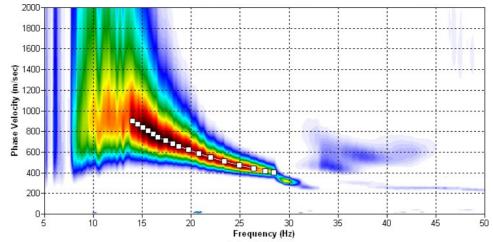
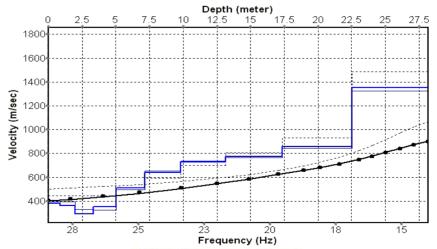
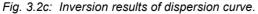


Fig. 3.2b: The manually picked dispersion images used for the derivation of the shear wave velocity section. The dispersion curves (white squares) are determined by linking the peaks of high energy. Red line: high resolution beam-forming curve for v_{max}.

3.2.3 Inversion process


3.2.3.1 Calculation of starting model


An initial velocity model is computed by analyzing a high quality dispersion curve. Generally, a 10 layer model with continuously increasing layer thicknesses, made up of 9 layers down to the maximum depth (z_{max}) to be in the order of 30% of the largest wavelength. That layer model frames the initial model for each inversion (see 3.3.3.2), the respective velocities are computed for each dispersion model. For all 10 layers the Poisson's ratio is normally assumed to be 0.4 and the rock/soil density to be 2.0 g/cm³.

In some cases, where the observed dispersion is extremely low, the velocity of half space layer is changed manually to a more realistic – namely of the same size like the 9 layer above – velocity.

3.2.3.2 Inversion of dispersion curves resulting in a 1D shear wave velocity distribution

The iterative inversion process is concluded either after 12 iterations or when the convergence condition of a RMS-error of less than 5 % (phase velocity) is met. For calculation details of inversion we refer to Xia et al. (1999).

brown: Inversion of dispersion curve (dots) resp. of the modeled dispersion curve (dotted line: initial model; continuous line: end model). Horizontal axis: frequency Hz, vertical axis: vs. blue: 10-layer-model (dotted: initial model, continuous fine line: second last model; continuous thick line: final model). Horizontal axis: depth [m] resp. frequency [Hz], vertical axis: phase velocity [m/s]).

3.2.4 Results from MASW analysis

3.2.4.1 Gridding and plotting of 2D v_s-velocity field

By assembling the 1D v_s - depth functions of all stations the final 2D v_s -field is derived using a Kriging gridding procedure as portrayed in Fig. 3.3h and 3.3i below:

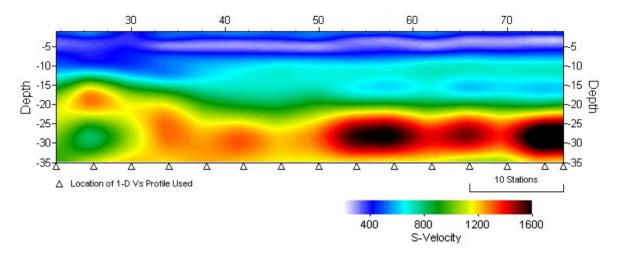
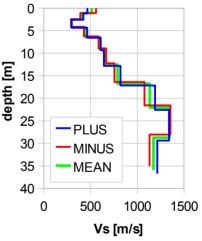



Fig. 3.2d: MASW-processed shear wave velocity fields as result of the inversion processing.

3.2.4.2 Tabular data of velocities

In discussion of the derived results (refraction and MASW velocities) with an expert (Dr. D. Fäh, Swiss Seismological Service) and a representative of the client (Dr. Ph. Renault), a section of the seismic profile was selected to calculate a mean velocity model representing the geological setting at the earthquake monitoring station.

Vs	Vs	}- [m/s	s]	V	s [n	n/s]		0		-
		39	97			39	9		5	-	
		21	12			19	7		10		
		42	25			43	3	7			
		57	78			56	1		15	-	
		60)4			59	1	bt	20	_	
		76	64			74	3	de	25		
		99	98			94	1		20		•
		11	62			111	1		30		•
		11	77			114	4		35		•
		12	56			126	65		40		_
		12	00			120			40	-	_

Tab. 3.2a: Averaged vs-depth function representing the SED station. Blue line: MASW-'PLUS' processing, red line: MASW-'MINUS' processing; green line: average of PLUS- and MINUS-functions.

			10	0 m arr	ay	40 m array							
depth	m1+	m1-	m2+	m2-	m1	m2	m	depth	m1	depth	m2	depth	m
1.6	452	491	545	438	471	463	496	1.1	514	1.0	399	1.1	456
3.5	743	486	247	381	614	243	492	2.5	408	2.2	197	2.4	302
5.9	290	460	896	239	375	746	548	4.2	296	3.8	433	4.0	364
8.9	849	592	577	476	720	633	672	6.4	448	5.8	561	6.1	505
12.7	932	753	872	597	843	847	852	9.1	599	8.2	591	8.7	595
17.5	737	878	1001	689	808	1002	872	12.5	656	11.2	743	11.9	700
23.4	943	999	1280	821	971	1256	1074	16.8	789	15.1	941	15.9	865
30.8	1346	1183	1430	905	1264	1430	1320	22.1	1134	19.8	1111	21.0	1122
40.0	1629	1435	1689	1004	1532	1689	1585	28.7	1348	25.8	1144	27.2	1246
50.0	2535	2372	1727	1232	2454	1727	2211	35.9	1174	32.2	1265	34.1	1220

A comparison of all derived mean shear wave velocity models of each line and direction gives a good overview of results quality (Tab. 3.2b and Fig. 3.2e).

Tab. 3.2b: vs-depth values of all MASW inversions at SED station.

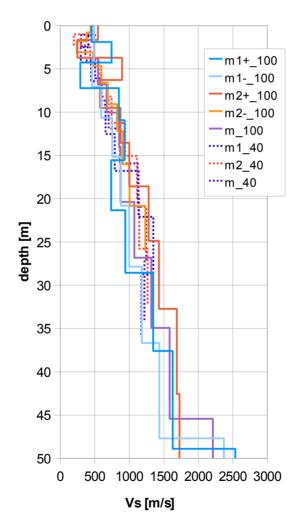


Fig. 3.2e: Comparison of the ensemble of inversion results of both lines and both directions at SED station, each using the 40-m- and the 100-m-arrays. blue lines: analyzes of records of line 1 red lines: analyzes of records of line 2 magenta line: mean of both lines and both directions for 100-m-array resp. 40-m-array. continuous lines: models of 100-m-array analyzes dotted lines: models 40-m-array analyzes.

3.2.5 Calculation of the shear wave velocity scalars v_{s,5}, v_{s,10}, ...

The parameters $v_{s,5}$, $v_{s,10}$, $v_{s,20}$, $v_{s,30}$, $v_{s,40}$, $v_{s,50}$ represent the average shear wave velocities in the depth interval between the surface and the respective depth levels and are determined from the formula

 $v_{s,n} = \frac{\sum_{i=1}^{n} d_i}{\sum_{i=1}^{n} d_i / v_{si}}$ with: $d_i = \text{thickness of layer i} \\ v_{si} = \text{corresponding shear-wave velocity.}$

The derived $v_{s,5}$, $v_{s,10}$, ... distributions are plotted in Fig. 3.2f.

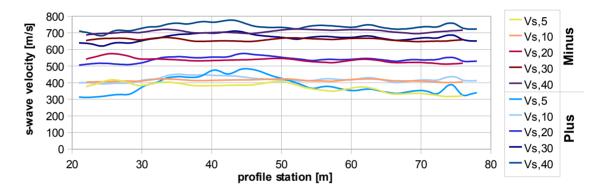


Fig. 3.2f: Graphs of the averaged $v_{s,5...}$ -values along the seismic line for the PLUS- (blue lines) and MINUS- (red lines) direction.

The average values of the s-wave velocity model $v_{s,5}$, $v_{s,10}$, $v_{s,20}$, $v_{s,30}$, $v_{s,40}$, $v_{s,50}$, $v_{s,100}$ (= average shear wave velocity from the surface to depths of 5 m, ... until 40 m) on the line segment nearest to the SED station (Tab. 3.3d) are summarized below:

	Vs,5	Vs,10	Vs,20	Vs,30	Vs,40
MINUS	373	413	536	659	708
PLUS	384	421	541	671	737
MEAN	378	417	538	665	722

 Tab. 3.2c:
 The average shear wave velocities within the depth intervals from surface down to 5 m, etc.... to 40 m, calculated for the whole line.

3.3 Seismic Refraction Tomography

3.3.1 Data conditioning

3.3.1.1 Reformatting and quality verification of field data and gain recovery

The field format SEG2 is being converted to the internal format of the Rayfract or ReflexW (shear wave data) resp. SPW processing system. The dynamic automatic gain and the pre-amplifier gain applied in the field are inversely applied to the seismic data in order to restore true amplitude data. Validation of the completeness, and assessment of the quality of the data set.

3.3.1.2 Recording geometry assignment

The recording geometry and the topographical survey information (x, y, z – station coordinates) are assigned to the seismic data.

3.3.1.3 Data editing (suppression of bad / dead traces, etc.)

Checking the correctness of the line geometry assignment; suppression of dead and bad traces, spectral analysis of the data at various offsets.

3.3.1.4 Preliminary analysis of refraction velocities

First seismic event arrival time analysis to get a first view of rock velocities.

3.3.2 First break time picking

3.3.2.1 Picking the compressional wave data

At each seismic trace in each record, the first event identified as compressional wave – this is normally the first seismic event, except in cases, where the sonic noise of source is faster than the direct wave in soil – is manually set by time marks. Traces with low S/N level are filtered carefully and in some cases excluded from FB time picking.

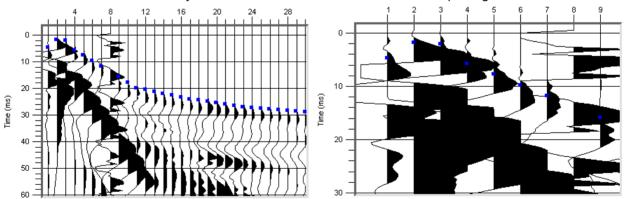
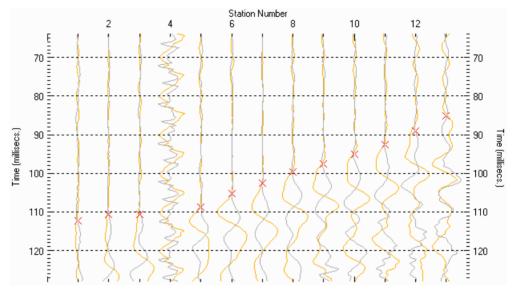



Fig. 3.3a: *p*-wave record (left) and detail of source (right) around the source (shot position 2.5) with positive amplitude excursions in black. Receiver 8 is a dead trace. Blue squares mark the manually picked first break arrival times. The detail shows that the first events on the seismic traces are of air wave (source triggered noise) and do not represent the direct soil wave.

3.3.2.2 Picking the shear wave data

At each shot position, two seismic records were acquired in both activation directions. These two records are displayed superimposed with different colors on each other. The seismic shear wave first break time is normally defined by the change of polarization (opposed amplitudes, see Fig. 3.3b). In some cases when the polarization is not well formed, a second characteristic of shear wave is drawn: larger amplitudes and lower frequencies, an event approx. two times later than the p-wave first break.

Fig. 3.3b: A detail from a high quality dual field record showing at each station the s-wave traces with opposing polarities in yellow and gray colors. Receiver 4 is a dead trace. The manually picked s-wave refraction arrivals at each station are marked with a red x.

3.3.2.3 Quality control of first break times picks

All first break times are displayed and controlled regarding consistency between records (see Fig. 3.3c)

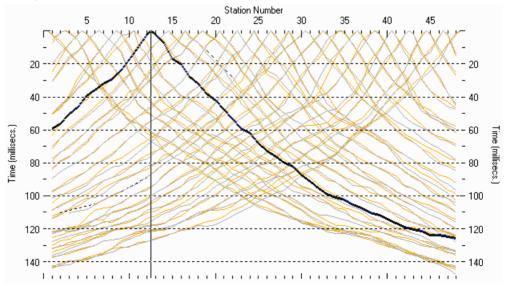


Fig. 3.3c: Display of all s-wave first break time curves of seismic line for quality control purposes. The colors respond to the two directions of stimulation as in Fig. 3.3b.

3.3.3 Analytical Determination of Initial Refraction Velocity Model

An initial 1D-velocity function is computed by averaging velocity-depth profiles derived by the *Delta-t-V method* (Gebrande and Miller, 1985 and Gebrande, 1986), so called *gradient method*. In some cases of good layered geology and flat topography, the initial velocity model derived by Delta-t-V could be used as initial model for inversion. The initial velocity model is determined in the 3-dimensional time-offset-CMP-domain of all first break arrival time curves in the 3-dimensional time-offset-CMP-domain (see. Fig. 3.3d).

3.3.3.1 CMP sorting

All first break times are sorted in the 3-dimensional coordinate system defined by the x-axis (CMP-position), the travel time axis and the source-receiver-offset axis (see. Fig. 3.3d).

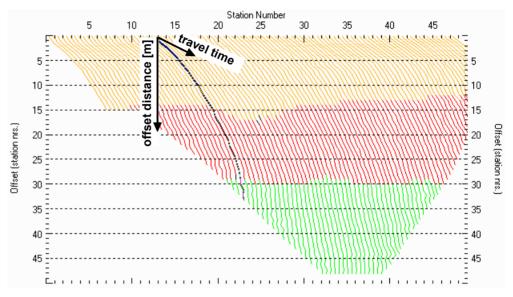


Fig. 3.3d: 3-dimensional distance-travel time diagrams at the mid-points between source points and receiver stations are instrumental when using the analytical CMP derivation of the initial velocity field.

The horizontal axes are along the CMP positions and the travel time respectively, the vertical axis denotes the offset distance between source and receiver positions. The colors represent different velocity layers.

3.3.3.2 Velocity determination

The initial velocity model is determined by temporal derivative of offsets in the CMP domain received by previous step in specific time- and station steps. Depending on the chosen method, this velocity field is averaged along the profile axis (1D-gradient method) resp. left as it is (Delta-t-V-method).

3.3.3.3 Gridding

To prepare the velocity field for the following inversion, it is gridded to a regular grid using the Kriging method.

3.3.4 Tomographic inversion of the velocity gradient field by iterative modeling

The velocity field is iteratively refined by the subsequent Wavepath Eikonal Traveltime (WET; Schuster 1993; Watanabe 1999) tomographic inversion process. For a successful inversion, normally 20 to 100 iteration steps are computed, depending on topographic variations and subsurface heterogeneity.

3.3.5 Results from refraction velocity determination

3.3.5.1 Images of velocity distribution

The inversion results are portrayed in Fig. 3.3e as a gridded velocity contour section and in Fig. 3.3f as a ray path density section.

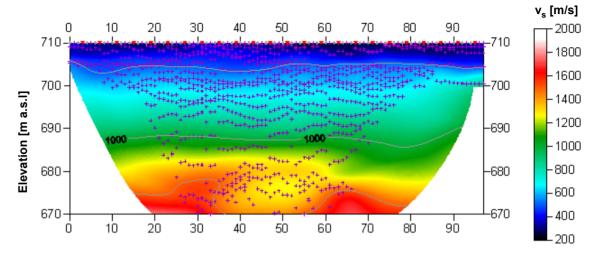
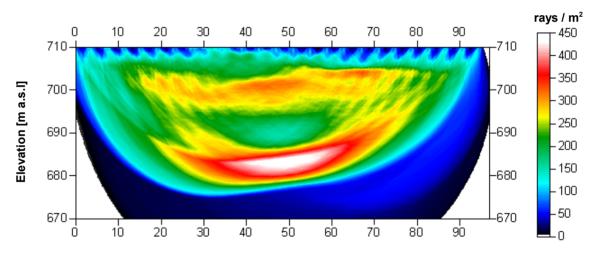
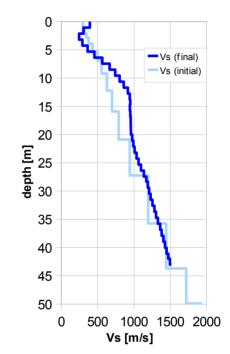



Fig. 3.3e: Shear wave velocity field of the line. Red/white colors denote solid rock, blue/black colors point to unconsolidated sediments and soil.

Fig. 3.3f: Shear wave ray path density along the seismic line. Red/white colors indicate high velocity contrasts (usually at the bedrock surface), blue/black colors denote low coverage areas.


GeoExpert ag

3.3.5.2 Tabular data of velocities

In discussion of the derived results (refraction and MASW velocities) with an expert (Dr. D. Fäh, Swiss Seismological Service) and a representative of the client (Dr. Ph. Renault), a section of the seismic profile was selected to calculate a mean velocity model representing the geological setting at the earthquake monitoring station.

The velocity field values (elevations) are converted to depth and subsequently computed as non-weighted averages over the selected portion.

Depth [m]	Vs [m/s]
0.0	394
2.8	269
5.7	492
8.5	741
11.3	902
14.0	941
16.8	955
19.7	970
22.5	1016
25.3	1097
28.0	1184
30.8	1237
33.6	1303
36.5	1378
39.3	1435
42.0	1495

Tab. 3.3: Final 1D s-wave velocity model derived from real data (horizontal average of all values) representing the situation at the earthquake monitoring station.

3.4 Reflection Seismic Data Processing

The following description of seismic processing steps gives an overview of the potentially applied processing sequence. Depending on survey's conditions, some of theses steps are canceled.

3.4.1 Data conditioning

3.4.1.1 Reformatting and quality verification of field data and gain recovery

The field format SEG2 is being converted to the internal format of the SPW processing system. The dynamic automatic gain and the pre-amplifier gain applied in the field are inversely applied to the seismic data in order to restore true amplitude data. Validation of the completeness, and assessment of the quality of the data set.

3.4.1.2 Recording geometry assignment

The recording geometry and the topographical survey information (x, y, z – station coordinates) are assigned to the seismic data.

3.4.1.3 Data editing (suppression of bad / dead traces, etc.)

Checking the correctness of the line geometry assignment; suppression of dead and bad traces, spectral analysis of the data at various offsets.

3.4.1.4 Preliminary analysis of refraction velocities

First seismic event arrival time analysis to get a first view of rock velocities.

3.4.2 Filtering and deconvolution

3.4.2.1 Analytical muting of refraction arrivals

In order to prevent excessive NMO stretching to shallow data and from larger offsets, and also to prevent the stacking of refracted arrivals, an offset dependent mute zone is defined at regular intervals along the seismic profiles. Within this mute zones the data are zeroed by using a Hanning type taper window at the mute zone boundaries.

3.4.2.2 Amplitude equalization in time and frequency domains

Application of time-variant amplitude scaling for compensation of attenuation loss with increasing depth and increasing offsets. An instantaneous **A**utomatic **G**ain **C**ontrol (AGC) function is applied using RMS amplitude scaling windows of variable lengths starting with 50 ms at the top of the record (0 ms TWT) and increasing linearily to 200 ms at 500 ms TWT.

3.4.2.3 Predictive deconvolution parameter tests / application

Since the survey may be affected by a considerable ground unrest with a predominant frequency of 16 $^{2}/_{3}$ Hz (railway) and/or 50 Hz (power supply) a gapped deconvolution procedure is applied for suppressing this noise.

3.4.2.4 Determination of band limiting corner frequencies / band-pass-filter application

The frequency band limiting filter is applied to attenuate low frequent high ground roll energy and to eliminate acoustic noise and/or ground unrest originate not from subsurface source reflections.

3.4.2.5 Optional 2-D filtering

Frequency – wavenumber (f-k) band limiting filter. This filter is applied to attenuate linear noise such as source generated noise, air traffic and – restricted – ground groll.

3.4.3 Velocity analysis and stack

3.4.3.1 Common Depth Point (CDP) sort

The data are sorted in the Common Depth Point (CDP) domain to get information belonging the same geological setting.

3.4.3.2 Semblance velocity analysis using supergathers

At regular intervals along the profiles groups of several CDP gathers are combined into CDP supergathers for semblance velocity analysis.

3.4.3.3 Normal Move-Out (NMO) correction and application of stretch mute

Normal **M**ove **O**ut correction; i.e. travel time and offset dependent arrival time correction which horizontally aligns reflection events of all source – receiver traces at a particular CDP-position. Data affected by more than 30% NMO stretching are muted.

3.4.3.4 Optional dip move-out (DMO) correction

The multichannel operation Dip Move Out (DMO) correction shifts arrival times to all possible positions – they are located along an elliptic shape – where the source – reflection point – receiver-offset are of the same length.

3.4.3.5 Automatic surface consistent residual statics (horizon guided sliding design windows)

Procedure to better align NMO corrected traces within a CDP gather. A small number of prominent horizon events, as identified on a previously created brute stack, are assigned to not more than two derive windows for calculating residual time shift corrections. The time shifts thus obtained are the result of a analysis of arrival time variations caused by velocity and elevation variations at the source and receiver positions. The derive windows are dynamic in length as well as in time in order to account for depth variations along the chosen reflection horizon events.

3.4.3.6 Sub-surface consistent trim residual static corrections

A mathematical attempt to still better align the traces in a CDP-gather. The traces are correlated with a pilot reference trace iteratively derived usually by a summation of all or a limited number neighboring traces.

3.4.3.7 Band-pass filtering

This filter is applied to enhance the visibility of reflection events and for shaping the signal spectrum for obtaining a higher resolution.

3.4.3.8 CDP stack

Signed traces over all offsets or in a specific offset range are summed horizontally, resulting in a single stacked trace at each CDP position.

3.4.3.9 Optional coherency filtering (by f-x deconvolution)

A cosmetic procedure to improve the lateral continuity of reflection events.

3.4.4 Stack finalizing and time-depth conversion

3.4.4.1 Optional spiking deconvolution

Processing step to reduce multiple reflections between two overlying horizons (i.e. ringing).

3.4.4.2 Band-pass filtering

This frequency band limiting filter is applied to enhance the visibility of high frequent events.

3.4.4.3 Trace amplitude balancing with sliding window AGC

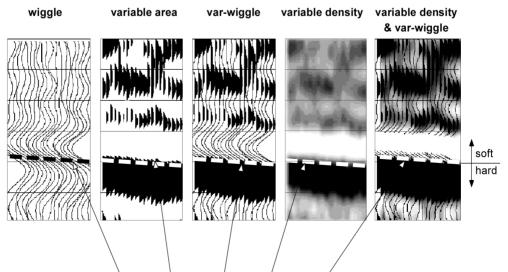
Scaling for attenuating high amplitude values in the near surface domain. An instantaneous **A**utomatic **G**ain **C**ontrol (AGC) function is applied using RMS amplitude scaling windows of linearly increasing lengths.

3.4.4.4 Depth conversion

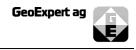
Using the velocity functions derived by refraction tomography and by semblance velocity analysis for converting TWT sections into depth sections by taking into account the relief elevations of the surface.

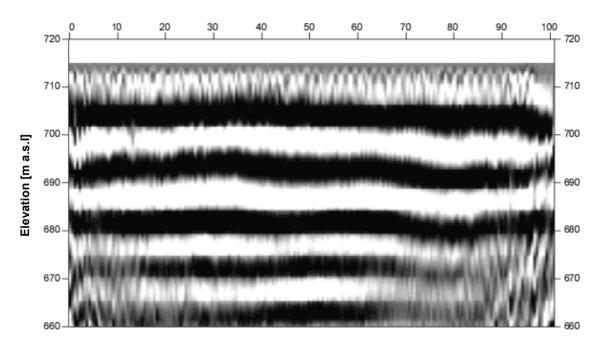
3.4.4.5 Final display of seismic depth section with inverse polarity (non-SEG-convention)

Display of the data with reversed polarity. As opposed to the SEG convention, the compressional phase of a reflection event is displayed as a positive amplitude excursion, i.e. in black.


3.4.5 The presentation of reflection seismic data

The data in a reflection seismic section are presented as an assembly of individual seismic signals at regular intervals along a seismic profile. The simplest way of representing the signals are single wiggle lines (first to the left in the illustration below). A more capturing presentation is the variable area form (second to the left). Combining these two modes results in the var-wiggle mode. Another method of data visualization is the variable density mode (second from the right).


The compressional phase of seismic signals is defined in this report as the onset of the positive amplitude excursion in black (Fig. 3.4a). Since the source signal is produced by an explosion or by an impact at the surface, the signal starts off with a compression of the ground particles. Thus the arrivals of reflection events are defined by the compressional phase.


In rare situations of velocity inversions, cases in which formation velocities are lower than in the layers above, polarity reversals of the reflected signals occur. The beginning of the reflection event would then be characterized by a dilatational phase, represented in this report as a negative amplitude excursion, i.e. in white.

The final p-wave seismic depth sections are displayed in Fig. 3.4b, the hybrid sections in Fig. 3.4c and d.

Begin of the compressional phase defined at the time of the zero crossing of the positive amplitude excursion

Fig. 3.4a Representation of reflection seismic data and the definition of a reflection event.

Fig. 3.4b: Display of seismic p-wave depth section with variable density mode presentation.

3.4.6 Representation of the hybrid seismic section

The hybrid seismic section is the reflection seismic section with the superimposed pwave velocity field. It portrays the geological structures and the p-wave velocity field, the latter being indicative for the rock / soil rigidity. The uninterpreted hybrid seismic section is portrayed in Fig. 3.4j and 3.4k below.

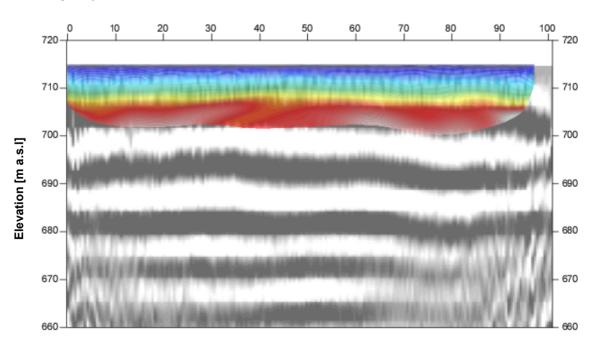
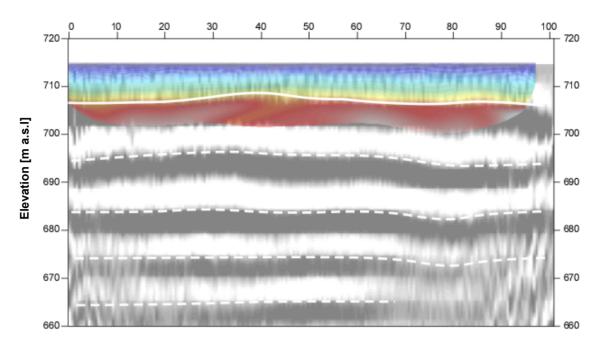



Fig. 3.4c Uninterpreted hybrid seismic section: superimposed onto the seismic reflection section is the color encoded p-velocity field derived by refraction tomography.

Fig. 3.4d Interpreted hybrid seismic section: The white solid line denotes the bedrock's surface, dashed lines the layering in the bedrock.

3.5 Summary of the results of MASW surveying

In Tab. 3.5a and Fig. 3.5a the mean MASW velocity models from all surveys are given.

Depth	ACB	AIGLE		BALST BNALP BOU		RR BRANT FLACH GIMEL	FLACH	GIMEL	HASLI	LLS	MUO	PLONS	SKEH	SLE	STEIN		TORNY WEIN		WILA	WIMIS
0.0	496	651	1207	1206	545	773	489	1409	1548	2968	982	1134	178	694	261	1077	456	619	483	993
1.0	496	651	1226	1233	545	797	489	1438	1548	2968	1004	1340	178	694	255	1077	456	619	521	993
2.0	510	202	1236	1132	545	197	499	1432	1548	2989	974	1242	155	669	273	1096	302	635	543	904
3.0	508	722	1254	1128	573	865	488	1416	1585	2978	974	1242	135	669	273	1096	420	634	543	826
4.0	508	655	1246	1135	573	865	472	1381	1585	2928	947	1261	135	697	301	1128	364	636	467	841
5.0	468	671	1276	1291	537	769	443	1331	1529	2928	947	1261	179	697	301	1128	364	619	467	991
6.0	468	614	1243	1291	537	769	416	1274	1529	2849	927	1219	179	678	293	1144	505	603	446	991
7.0	466	614	1244	1344	537	752	411	1274	1442	2849	927	1219	227	678	293	1144	505	569	455	1223
8.0	466	5775	1244	1344	497	171	114	1225	1395	2762	908	1219	227	655	330	1121	520	569	466	1223
9.0	500	678	1197	1344	497	771	114	1199	1395	2762	954	1175	227	655	334	1121	595	552	466	1223
10.0	549	678	1141	1470	497	903	472	1199	1325	2762	954	1175	254	655	334	1121	595	552	613	1396
11.0	549	812	1141	1470	497	903	472	1207	1301	2786	954	1175	254	641	413	1041	671	552	659	1396
12.0	638	812	1108	1470	500	1078	472	1283	1301	2786	1064	1389	254	641	472	1041	671	629	659	1396
13.0	638	912	1108	1582	500	1078	472	1283	1301	2786	1064	1389	254	641	472	1041	700	629	659	1485
14.0	708	1025	1079	1755	500	1276	548	1283	1376	3024	1064	1389	300	641	472	1041	700	629	702	1580
15.0	708	1025	1079	1755	500	1276	548	1418	1386	3024	1064	1389	300	642	497	1107	799	629	759	1580
16.0	762	1025	1079	1755	549	1392	663	1579	1386	3024	1260	1534	300	642	533	1107	799	750	759	1580
17.0	841	1264	1191	1846	549	1392	663	1579	1386	3024	1260	1639	300	642	533	1107	865	750	759	1673
18.0	841	1264	1331	2093	549	1537	694	1579	1386	3174	1260	1639	347	642	533	1107	865	750	759	1732
19.0	841	1296	1331	2093	549	1537	694	1579	1603	3174	1260	1639	347	662	533	1107	865	750	831	1732
20.0	743	1296	1331	2093	549	1537	694	1765	1678	3174	1260	1639	347	662	494	1256	950	750	831	1732
21.0	743	1296	1331	2093	709	1537	754	1765	1678	3174	1370	1668	347	662	469	1256	950	741	831	1732
22.0	791	1296	1468	2624	709	1649	754	1857	1678	3174	1370	1743	347	662	469	1256	1123	843	831	1732
23.0	791	1466	1725	2624	709	1649	754	1857	1678	3313	1370	1743	347	662	469	1256	1123	843	831	2132
24.0	791	1552	1725	2737	709	1677	709	1857	1678	3313	1370	1743	383	662	469	1256	1123	843	897	2132
25.0	791	1552	1725	2737	709	1677	709	1857	2018	3313	1370	1743	383	666	586	1256	1123	843	889	2132
26.0	976	1552	1725	2737	709	1677	709	1936	2018	3313	1370	1743	383	666	586	1256	1139	931	889	2132
27.0	976	1552	1725	2737	709	1677	723	1936	2018	3313	1733	2216	383	666	696	1314	1139	931	889	2132
28.0	1072	1552	1985	2737	917	1677	723	1935	2018	3313	1733	2216	383	666	696	1314	1139	1001	889	2132
29.0	1072	1552	1985	2737	917	1744	857	1935	2018	3313	1733	2278	383	666	696	1314	1246	1001	889	2132

Tab. 3.5a Summarized MASW-vs-models from all surveys.

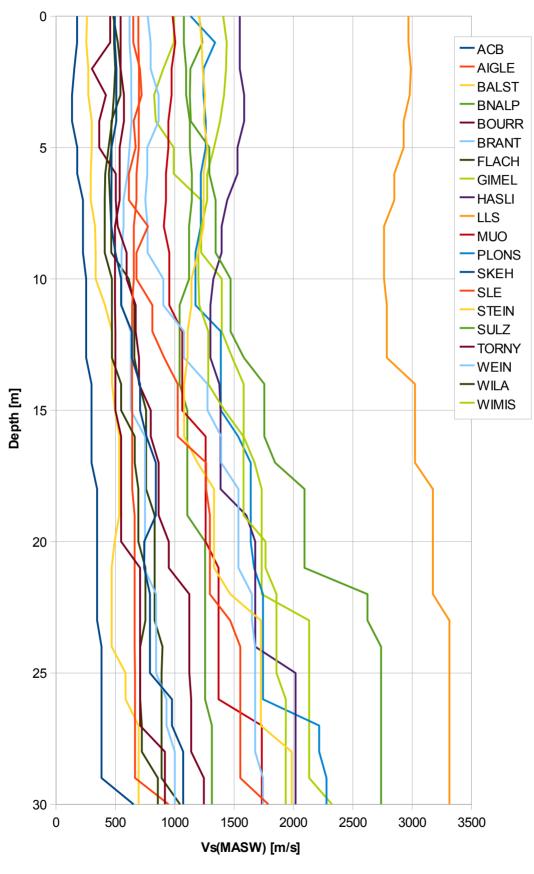


Fig. 3.5a Vs(MASW)-models from all surveys.

Station	Line	Vs,5	Vs,10	Vs,20	Vs,30	Vs,40	Vs,50
ACB	M1	530	516	615	634		
	M2	487	478	556	631		
AIGLE	M1	471	515	738	860		
	M2	825	756	719	839	948	1031
BALST	M1	1364	1362	1321	1411		
	M2	1150	1129	1053	1076		
BNALP	M1	1529	1471	1425	1593		
	M2	732	860	1143	1301		
BOURR		549	513	547	630	694	
BRANT	M1	1733	1597	1591	1781	1864	
	M2	951	856	942	1096	1195	
FLACH	M1	453	423	500	547	549	
	M2	529	497	545	617	644	529
GIMEL	M1	1426	1345	1319	1437	1488	
	M2	1512	1473	1408	1503	1550	
HASLI	M1	1733	1597	1591	1781	1864	
	M2	1395	1337	1292	1375	1493	
LLS		2987	2920	2893	2943	2988	
MUO	M1	862	809	877	970		
	M2	1129	1113	1111	1179		
PLONS	M1	1836	1772	1709	1782	1830	
	M2	641	600	734	888		
SKEH	M1	152	186	236	280		
	M2	155	166	206	239		
SLE		703	695	667	670	683	
STEIN	M1	245	277	333	378		
	M2	283	269	333	373		
SULZ	M1	1194	1185	1123	1201		
	M2	1027	1025	1072	1120		
TORNY	M1	378	417	538	665	722	
	M2	330	426	587	704		
WEIN	M1	500	480	571	633		
	M2	648	586	639	670	702	
WILA	M1	575	575	659	700		
	M2	363	362	487	579		
WIMIS	M1	1137	1112	1308	1433	1384	
	M2	689	774	990	1132		

In Tab. 3.5b and Fig. 3.5b the MASW velocity scalars $v_{s,5}$, $v_{s,10}$, ... from all surveys are given.

Tab. 3.5b Summarized MASW-v_{s,5-}, v_{s,10}, \dots values from all surveys.

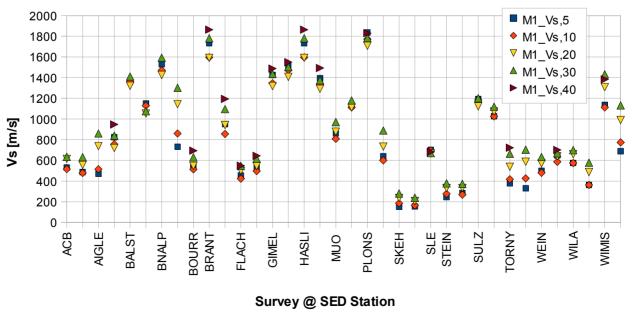


Fig. 3.5b: MASW-derived v_{s.5}-, v_{s.10}-, ... values from all surveys. The values from LLS are skipped in the diagram due to its extraordinary high values.

3.6 Summary of the results of shear wave refraction tomography

In Tab. 3.6 and Fig. 3.6 the mean refraction tomography shear wave velocity models from all surveys are given.

0.0 270 130 346 232 161 356 342 277 103 256 126 547 70 555 325 561 376 361 376 361 376 361 376 361 376 361 376 361 376 361 376 361 376 361 <th>Depth</th> <th>ACB</th> <th>AIGLE</th> <th>BALST BNALP BOU</th> <th>BNALP</th> <th></th> <th>RR BRANT FLACH GIMEL</th> <th>FLACH</th> <th>GIMEL</th> <th>HASLI</th> <th>LLS</th> <th>MUO</th> <th>PLONS</th> <th>SKEH</th> <th>SLE</th> <th>STEIN</th> <th>sulz 1</th> <th>τορνγ</th> <th>WEIN</th> <th>WILA</th> <th>WIMIS</th>	Depth	ACB	AIGLE	BALST BNALP BOU	BNALP		RR BRANT FLACH GIMEL	FLACH	GIMEL	HASLI	LLS	MUO	PLONS	SKEH	SLE	STEIN	sulz 1	τορνγ	WEIN	WILA	WIMIS
248 610 332 456 342 574 571 375 476 173 236 170 236 136 137 236 580 530 <th>0.0</th> <th>270</th> <th>479</th> <th>155</th> <th>348</th> <th></th> <th>227</th> <th>181</th> <th>315</th> <th>444</th> <th>2074</th> <th>180</th> <th>459</th> <th>278</th> <th>783</th> <th>200</th> <th>825</th> <th>258</th> <th>128</th> <th>547</th> <th>703</th>	0.0	270	479	155	348		227	181	315	444	2074	180	459	278	783	200	825	258	128	547	703
428 665 607 536 300 477 232 706 113 237 1107 236 239 337 317 435 568 650 132 812 1457 223 1056 157 289 1337 1165 1726 337 145 569 337 145 569 337 145 569 337 145 156 1337 1465 136 1479 175 269 337 146 173 166 179 175 169 337 146 173 166 179 176 179 179 179 179 179 179 179 179 179 179 170	1.0	294	501	333	456	342	227	181	534	674	2517	376	459	320	904	201	851	285	136	559	993
60 103 825 618 421 457 232 1056 173 105 1191 722 1266 340 371 345 </th <th>2.0</th> <th>428</th> <th>695</th> <th>607</th> <th>536</th> <th>380</th> <th>457</th> <th>232</th> <th>796</th> <th>1138</th> <th>2954</th> <th>496</th> <th>613</th> <th>479</th> <th>1173</th> <th>235</th> <th>1107</th> <th>285</th> <th>238</th> <th>509</th> <th>1191</th>	2.0	428	695	607	536	380	457	232	796	1138	2954	496	613	479	1173	235	1107	285	238	509	1191
61 1210 066 722 126 137 166 133 166 123 266 133 163 371 656 133 641 133 643 133 643 133 143 143 143 143 143 143 143 143 143 143 143 143 143 143 143 143 143 <th>3.0</th> <th>560</th> <th>1023</th> <th>825</th> <th>618</th> <th>421</th> <th>457</th> <th>232</th> <th>1056</th> <th>1570</th> <th>2987</th> <th>630</th> <th>613</th> <th>851</th> <th>1191</th> <th>272</th> <th>1269</th> <th>340</th> <th>332</th> <th>568</th> <th>1337</th>	3.0	560	1023	825	618	421	457	232	1056	1570	2987	630	613	851	1191	272	1269	340	332	568	1337
10 11 10 40 10 40 100 40 100 40 100 40 100 40 100 40 100 40 100 40 100 40 100 40 100 40 100 40 100 40 100 40 100 40 100 40 100 <th>4.0</th> <th>641</th> <th>1210</th> <th>1068</th> <th>762</th> <th>421</th> <th>760</th> <th>351</th> <th>1285</th> <th>1151</th> <th>2976</th> <th>743</th> <th>780</th> <th>1019</th> <th>1214</th> <th>289</th> <th>1361</th> <th>397</th> <th>371</th> <th>642</th> <th>1414</th>	4.0	641	1210	1068	762	421	760	351	1285	1151	2976	743	780	1019	1214	289	1361	397	371	642	1414
656 105 106 47 100 501 103 501 103 501 303 303 133 134 145 305 303	5.0	626	1372	1237	907	467	863	351	1485	1228	2984	802	1337	1165	1273	298	1413	475	456	723	1567
688 183 12.3 12.3 55.6 1033 50.1 17.2 12.3 1	6.0	595	1654	1365	1106	467	1109	501	1649	1266	3002	883	1337	1346	1455	306	1429	535	387	817	1632
787 1852 1357 1306 575 1093 510	7.0	688	1838	1423	1239	556	1093	501	1725	1289	2991	883	1295	1372	1631	317	1409	622	391	006	1676
862 1733 1205 1511 575 1280 1235 1331 1331 1334 1	8.0	787	1852	1357	1306	575	1093	650	1648	1302	2931	888	1295	1383	1663	327	1409	719	412	980	1696
934 1780 1064 1656 633 137 674 1466 416 456 416 456 416 456 416 456 416 456 416 456 416 456 416 456 416 456 416 456 416 456 416 456 416 456 416 456	9.0	862	1793	1205	1511	575	1280	658	1758	1323	2837	903	1032	1414	1574	351	1394	812	432	1056	1640
1725 1066 1906 553 154 674 203 145 143 146 145 146 145<	10.0	934	1780	1094	1658	593	1327	674	1866	1416	2692	924	1032	1500	1453	381	1431	870	459	1134	1622
1675 1069 2130 617 1607 737 2192 1414 5568 1012 1664 1333 419 1664 1333 419 1664 102 453 105 453 105 453 105 453 105 455 105 455 105 455 105 455 105 455 105 455 105 455 105 455 105 455 105 455 105 455 107 456 107 456 107 456 107 456 107 456 107 456 107 456 107 105 107 105 107	11.0	1078	1725	1066	1906	593	1554	674	2004	1422	2623	955	966	1620	1384	404	1446	955	459	1187	1638
	12.0		1675	1069	2130	617	1607	737	2192	1414	2558	1012	1040	1667	1383	419	1426	1007	483	1224	1804
	13.0		1664	1122	2265	667	1585	776	2220	1438	2633	1011	1040	1702	1466	439	1453	1053	495	1234	1838
	14.0		1689	1185	2107	667	1616	776	2315	1467	2735	1082	1081	1743	1595	453	1476	1102	495	1273	1885
	15.0		1729	1239	2101	733	1645	807	2398	1502	2845	1129	1081	1782	1746	468	1495	1117	517	1298	1940
	16.0		1748	1266	2217	816	1734	807	2489	1547	2982	1216	1132	1861	1925	486		1103	567	1290	2090
	17.0		1776	1306	2500		1910	844	2577	1585	3192	1250	1132	1893	2117	505		1118	567	1335	2177
1816138508832144884263617193495132317871841540958695693183614358562329925273817593553135320771943574958689187118711841958285818023606137234791871616975689191410067741849958298718483634138434791926683992689197410067281993992313418933664140545322142723100776220211027102772819939923714189336641405453221427231007762202110271027728199399237171946374545322142723100776220311049725199310343717194637451374439023617087067082030104972519931034371719463745137443902361708706708706203110177231943374513744390236171427087067087067062040101872319433745137443902361707243070	18.0		1787	1334	2500	883	2151	884	2679	1637	3355	1304	1277	1826	2342	519		1085	609	1414	2364
18361435856232992527381759355313532077194357494395864918781491774184995828581802360613723479187161697568919159837741849958285818033664140545322054723902762191698372819939923134189336641405453220547231007762202110277281993992313418933664140545322142738100776220211027728199399231341893366414054532214273810077622021102772819939923134189336641405453221427387037032021102772819939923134191637171916371443902361723103676220801049725199310343717194637141394453221427387037032014101772519931033351820293791139445322142708703703214211371033214310932131093213194637161392 <td< th=""><th>19.0</th><th></th><th>1816</th><th>1385</th><th></th><th>883</th><th>2144</th><th>884</th><th>2636</th><th>1719</th><th>3495</th><th>1323</th><th>1787</th><th>1841</th><th></th><th>540</th><th></th><th>958</th><th>609</th><th>1494</th><th></th></td<>	19.0		1816	1385		883	2144	884	2636	1719	3495	1323	1787	1841		540		958	609	1494	
18781491 774 184995828581802360613723479187161697568919159837741849958298718483634138434791926683992689197410067281993992313418933664140545322054723100776220271027728199399231341893366414054532214273810077622080104972619939923217191637011394453221427381036762208010497251993103433771946370113944532214273810367622147110175321431069351820293797139243682410679103792321461137710175321431093351820293797139243687057057137923214611377101753214310933518202937633654736370570571379232148113771911093713221431093351820393762243070571379232148113710937132135319371322430716713791	20.0		1836	1435		856	2329	925	2738	1759	3553	1353	2077	1943		574		958	649	1552	
	21.0		1878	1491		774	1849	958	2858	1802	3606	1372	3479	1871		616		975	689	1556	
197410067281993992313418933664140545322054723723100776220271027728199399232171916370113944532214273810367622080104972519931034337719463745137443902361768106483721471101753214310343377194637451374439023617681064837214711017532143106935182029379713924368241067910979232146113707132143109371820293797139243682410679109792321681137002143109351820293797236924307051137923226811960021353919737622431705713792323151276002274109002135398572430717011701039231512760022741090213339857243071170103123151276002133398572430771170103123151276002133<	22.0		1915	983		774	1849	958	2987	1848	3634	1384	3479	1926		683		992	689	1539	
2027 1027 728 1993 992 3217 1916 3701 1394 4532 2142 738 1036 762 2080 1049 725 1993 1034 3377 1946 3745 1374 4390 2361 768 1064 837 2147 1101 753 2143 1069 3518 2029 3797 1392 4368 2410 679 1097 923 2196 1137 0 753 2143 1093 3518 2030 3762 2430 679 1097 923 2196 1137 0 753 2143 1093 7135 3919 762 2431 705 7137 923 2268 1196 0 7274 1090 2135 3919 762 2431 705 7137 923 2315 1276 0 1235 3919 77 2430 71 170	23.0		1974	1006		728	1993	992	3134	1893	3664	1405	4532	2054		723		1007	762	1474	
2080 1049 725 1993 1034 377 1946 3745 1374 4390 2361 768 1064 837 2147 1101 753 2143 1069 3518 2029 3797 1392 4368 2410 679 1097 923 2196 1137 9 2143 1093 518 2080 3858 3070 2430 705 1137 923 2196 1196 9 2143 1093 2135 3919 3762 2431 705 7137 923 2214 1090 2135 3919 3762 2431 705 7177 1037 2315 1276 70 2133 3985 7762 2431 7170 1031	24.0		2027	1027		728	1993	992	3217	1916	3701	1394	4532	2142		738		1036	762	1403	
2147 1101 753 2143 1069 3518 2029 3797 1392 4368 2410 679 1097 923 2196 1137 0 2143 1093 203 3858 3070 2430 705 1137 923 2196 1137 0 2 2080 3858 3070 2430 705 1137 923 2268 1196 0 2 2135 3919 3762 2431 0 1170 1039 2315 1276 0 2 2 3985 3885 2 2 319 0 107 2 1030	25.0		2080	1049		725	1993	1034	3377	1946	3745	1374	4390	2361		768		1064	837	1376	
2196 1137 2143 1093 2080 3858 3070 2430 705 1137 923 2268 1196 2274 1090 2135 3919 3762 2431 70 1137 923 2315 1276 2774 1090 2135 3919 3762 2431 70 1170 1039 2315 1276 2274 1090 2193 3985 72 2430 7191 1039	26.0		2147	1101		753	2143	1069	3518	2029	3797	1392	4368	2410		679		1097	923	1410	
2268 1196 2274 1090 2135 3919 3762 2431 1170 1039 2315 1276 2274 1090 2193 3985 2430 1191 1039	27.0		2196	1137			2143	1093		2080	3858		3070	2430		705		1137	923	1486	
2315 1276 2274 2193 3985 2430 1191 1039	28.0		2268	1196			2274	1090		2135	3919		3762	2431				1170	1039	1584	
	29.0		2315	1276			2274			2193	3985			2430				1191	1039	1671	

Tab. 3.6 Summarized refraction tomographic v_s-models from all surveys.

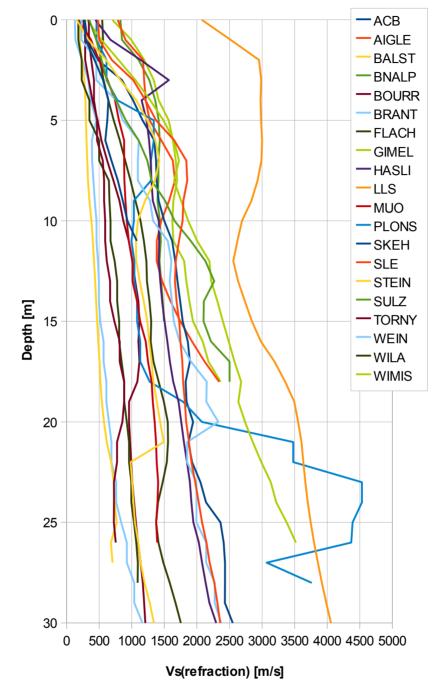


Fig. 3.6 Refraction tomographic shear wave velocity v_s-models from all surveys.

3.7 Summary of the results of compressional wave refraction tomography

In Tab. 3.7 and Fig. 3.7 the mean of refraction tomography compressional velocity models from all surveys are given.

Depth	ACB	AIGLE	BALST	AIGLE BALST BNALP BOU		RR BRANT FLACH GIMEL HASLI	FLACH	GIMEL	HASLI	LLS	MUO	PLONS SKEH	SKEH	SLE	STEIN	SULZ .	SULZ TORNY WEIN	WEIN	WILA	WIMIS
0.0	457	248	315	630	382	285	151	207	799	2512	422	378	792	933	401	1388	228	158	432	1222
1.0	543	512	315	630	382	285	271	707	1479	2598	422	524	1049	1234	401	1553	365	306	545	1222
2.0	725	930	477	839	431	425	394	1036	1907	2738	512	1663	1382	1549	494	1943	586	513	683	2125
3.0	912	1583	653	1091	757	832	487	1228	2025	2875	755	2559	1829	1786	614	2176	721	609	927	2701
4.0	1190	1848	1093	1376	757	1278	644	1727	1799	3005	973	3534	2023	1937	730	2261	934	798	1020	3202
5.0	1410	1891	1625	1783	1058	1689	805	1948	1747	3132	1235	4023	2495	2083	899	2039	1250	836	1166	3266
6.0	1674	1980	1781	2099	1234	1917	1008	2401	1566	3271	1396	4830	2749	2260	991	2019	1409	878	1222	3547
7.0	1801	2112	2304	2434	1234	2335	1069	2756	1638	3439	1439	5015	3132	2374	1090	2102	1718	930	1332	4052
8.0	1914	2185	2412	2752	1250	2658	1101	3159	1713	3644	1417	4972	3177	2391	1274	2207	1857	1087	1393	4465
9.0	1901	2286	2791	3142	1294	2793	1114	3472	1711	3857	1424	4997	3196	2352	1391	2252	2074	1209	1504	4528
10.0	1957	2469	3018	3538	1294	2823	1123	3968	1770	4088	1415	5183	3265	2263	1508	2325	2158	1341	1595	4403
11.0	2023	2513	3013	3902	1417	2889	1147	3958	1844	4345	1349	5033	3341	2109	1673	2364	2264	1459	1699	4459
12.0	2103	2424	3170	4445	1417	2964	1199	4331	1918	4622	1375	5228	3365	2012	1735	2383	2297	1627	1774	4682
13.0	1968	2352	3169	4549	1577	2954	1285	4564	1980	4910	1485	5493	3380	2110	1758	2420	2334	1710	1869	5026
14.0	1968	2432	3276	4620	1749	2982	1389	4984	1992	5179	1583	5546	3546	2255	1866	2455	2412	1789	1950	5598
15.0	2020	2577	3393	4693	1749	3055	1469		2154	5408	1693	5534	3689	2315	1959	2508	2486	1812	2055	5886
16.0	2061	2951	3460	4801	1919	3159	1533		2576	5585	1733	5526	3850		2219	2555	2241	1852	2147	
17.0	2086	3093	3578	3915	2082	3200	1597			5728	1772	5621	3977		2364	2693	2289	1872	2305	
18.0	2093	3119	3557	4167	2082	3297	1635			5862	1780		4017			2714	2284	1922	2388	
19.0	2083	3060	3551	4543	2247	3236	1656			5995	1816		4032			2773	2240	1955	2548	
20.0		2998	3551	4865	2414	3461	1670			6104	1842		3882			2824	2220	2245	2633	
21.0		2942	3520	5028	2414	3377	1691			6181	1914		4035			2835	2106	1555	2773	
22.0		3080	3636	5139	2560	3501	1719			6217	1958		4215			2862		1594	2889	
23.0		3275	3634	5329	2560	3608	1766			6231	2149		4232			2878		1659	3022	
24.0		3565	3771		2692	3714	1914				2190		4088			2575		1726	3126	
25.0			3847		2817	3714	1955				2233		3951			2841		1782	2705	
26.0			3884		2817	3808	1965				2277		3832			2841		1842	2821	
27.0			3941		2923	3857	1975				2323					2857		1896	2878	
28.0			3984		2923	3869	1977				2363					2857		1954	2993	
29.0			4136		2933	3869	1971				2411					2922		2010	3050	

Tab. 3.7 Summarized refraction tomographic v_p -models from all surveys.

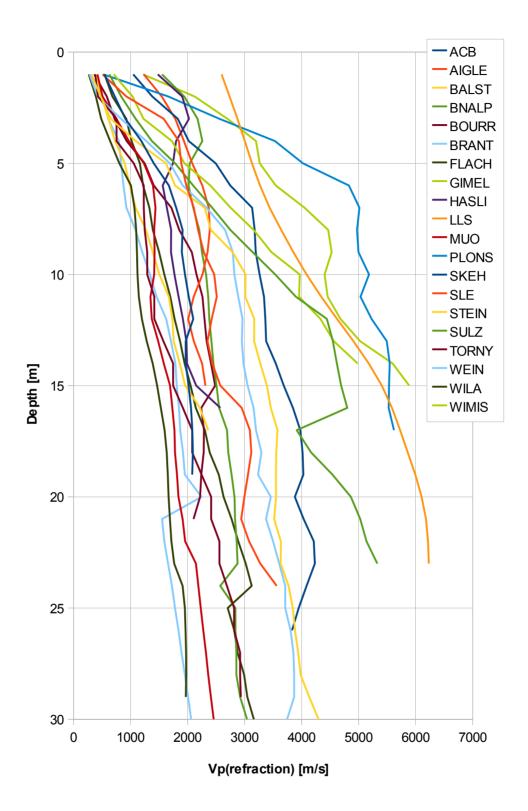


Fig. 3.7 Refraction tomographic compressional wave velocity v_p-models from all surveys. Steps in the velocities are caused by different obtained depths of results and highly different velocities between line 1 and line 2.

4 ERROR ESTIMATES

Due to methodological differences, v_s velocities derived by MASW analysis and by the refraction tomography technique may differ considerably. This is because MASW analysis cannot image small rock/soil inhomogeneities as a dispersion image with an array length of i.e. 40-m only yields one single v_s-value at each depth. On the other hand, refraction diving wave tomography results produce v_s-sections with a high lateral resolution, but fail to provide information at greater depths.

The error values given in Tab. 4.1 below are a rough overview over the estimated errors for all surveys. More detailed information about errors in specific survey refer to the respective report in appendices.

Surveying method	Type of result	Error estimate
v _s – refraction tomography	v _s – velocity field image	10 – 20 %
MASW only "+" or only "-" values*	v _s – velocity field image	10 – 25 %
MASW (mean of "+" & "-" values)*	vs – velocity field image	8 – 15 %
v _p – refraction tomography	v _p – velocity field image	5 – 12 %
Reflection seismic surveying	Image of subsurface structures	n.a.

* MASW values in the uppermost 6 m are usually prone to an error of about 20 to 40 % (only one direction) resp. 10 - 20 % (mean of both directions).

Tab. 4.1 Error estimates for the methods applied. Note that higher error estimates are to be taken into account with increasing depths.

The above error estimates are of a qualitative character only. In view of the intense fluctuations to be expected in both the lateral and vertical directions, any attempt to derive a quantitative general error estimate to be valid for the entire survey is to be considered as futile. In particular possibly existing military bunkers and galleries below the survey site (in which the earthquake monitoring station is positioned) on both seismic lines have a certain impact on the quality of dispersion images. Nevertheless, all velocity data coincide well, independently of the methodological differences.

In most surveys, the uppermost \sim 4-6 m, the MASW derived shear wave velocities are considerably higher than the refraction tomography values. In greater depths, they correspond well.

To compare the quality of vs-models derived in this project, the Tab. 4.2 gives an overview of mean values of all vs(refraction)- and vs(MASW)-models and the respective deviation of percentage.

NIMIS	Vs MD	[%] [%]	848 20	993 17	1048 20	1081 24	1128 25	1279 23	1312 24	1449 16	1460 16	1431 15	1509 10	1517 8	1600 13	1661 11	1682 8	1700 9	1750 13	1841 12	1943 14	1155 67	1732 5	1732 5	1732 5	2132 13	2132 13	2132 13	2132 13	2132 13		2132 13
WILA	MD	[%]	52) 45	35	32	38	40	46	50	52	57	53	54	57	56	54	50	48	47	49	48	2 48	46	43	40	34	33	34	37		40
	D Vs	[%] [m/S]	66 515	64 540	45 526	1 555	26 554	17 595	22 631	1 678	20 723	16 761	16 873	16 923	11 942	10 947	10 987	8 1029	12 1025	12 1047	9 1087	9 1163	8 1192	5 1194	10 1185	7 1153	7 1150	5 1132	2 1149	2 1187	1027	
WEIN	Vs MD	[m/S] [%	374 6	378 6	436 4	483 31	504 2	537 1	495 2	480 21	490 2	492 1	521 1	521 1	581 1	585 1	585 1	592 8	689 1	689 1	703 §	703 §	716 8	724 5	792 1	816 7	816 7	841 5	929 2	929 2	1013 4	
	MD V	[%] [m	33 3	26 3	21 4	18 4	23 5	22 5	13 4	10 4	16 4	15 4	19 5	17 5	20 5	20 5	22 5	17 5	16 6	15 6	12 7	8 7	11 7	12 7	5 7	5 8	4 8	2	2	6	1	
TORNY	Vs I	[m/S] [357	371	293	380	381	420	520	563	619	704	733	813	839	876	901	958	951	992	975	896	953	958	1079	1084	1094	1103	1125	1138	1149	
-	MD		5	10	4	7	6	10	7	7	5	10	£	15	15	16	16	14	ę	e	e	3	3	3	3	ς Ω	3	3	с С	7	~	
SULZ	٧s	[%] [%]	993	1002	1100	1154	1205	1223	1239	1232	1217	1212	1224	1176	1169	1178	1186	1236	1107	1107	1107	1107	1256	1256	1256	1256	1256	1256	1256	1314	1314	
STEIN	MD] [%]	13	12	10	9	с	с	6	10	ю	3	7	10	9	4	2	5	5	3	3	4	9	14	19	21	22	16	4	1	2	
ST	Vs	[m/S]	230	228	254	273	295	299	299	305	328	343	357	408	446	455	463	483	509	519	526	537	534	542	576	596	603	677	617	669	696	
SLE	s MD	[%] [%]	8	9 13	6 25	5 26	5 27	5 29	6 36	41	ig 43	5 41	64 38	3 37	2 37	54 39	8 43	14 46	34 50	30 53	32 57	2	2	2	2	8	2	9	9	9	9	
	D Vs	/m] [%]	2 738	29 799	1 936	3 945	7 955	3 985	7 1066	72 1154	72 1159	72 1115	71 1054	73 1013	74 1012	74 1054	71 1118	71 1194	72 1284	73 1380	68 1492	8 662	0 662	79 662	0 662	3 662	1 662	84 666	85 666	85 666	85 666	
SKEH	Vs MD	m/S] [%	228 32	249 2	317 51	493 73	577 77	672 73	763 77	7 99 7	805 7	821 7	877 7	937 7	961 7	978 7	1021 7	1041 7	1080 7	1096 7	1086 6	1094 68	1145 70	855 7	873 80	916 83	969 81	1043 8	1059 8	1066 8	1066 8	
	MD V	[%] [m	65 2:	53 2.	50 3	50 4	38 5.	31 6	29 7	28 7	28 8	25 8:	25 8	25 9:	20 9	20 9.	19 10	19 10	15 10	19 10	16 10	27 10	17 11	35 8	33 8.	44 9	44 9	43 10	43 10	15 10	25 10	
PLONS	Vs N	[m/S] [797 (899	928	928	1021	1299	1278	1257	1257	1103	1103	1085	1214	1214	1235	1235	1333	1386	1458	1713	1858	2573	2611 :	3137 4	3137 4	3066 4	3056 4	2501	2732	
	QW	[%] [r	69	46 8	33 (21 9	16 1	14	15 1	17 1	17 1	14 1	12 1	10	5 1	6 1	ъ 1	4	4	3	4	4	5 1	4	4	5 3	4	4	4	10 2	10 2	
0 NM	٧s	[m/S]	581	690	735	802	845	874	905	905	898	928	939	954	1038	1037	1073	1096	1245	1256	1274	1281	1291	1370	1374	1381	1378	1371	1377	1733	1733	
LLS	MD	[%] [%]	18	8	-	0	-	-	ς α	5	3	1 (-	с т	4	3	5	3	-	33	3	5	9	9 (1 7	5	6	9 (7	8	80	
Ξ.	٧s		2521	2742	2971	2983	2952	2956	2925	2920	2846	2800	2727	2704	2672	2709	2880	2934	3003	3108	3265	3335	3364	3390	3404	3488	3507	3529	3555	3585	3616	
HASLI	MD	s] [%]	3 55	1 39	3 23	8 24	1 15	8 12	1	1 6	4 7	1 7	5	16	9 6	99	8	5 8	6	2	0 10	2 16	5 12	9 12	5 13	0 13	8 14	4 11	2 10	8 11	7 11	
	D Vs	[] [m/S]	3 996	46 1111	9 1343	5 1578	1441	1428	3 1441	5 1391	15 1364	9 1371	2 1355	25 1341	26 1339	7 1346	29 1406	26 1425	2 1440	4 1452	6 1470	5 1642	2 1705	4 1719	3 1735	6 1750	7 1758	9 1994	29 2022	2038	2057	
GIMEL	Vs MD	[%] [S/m]	862 63	986 4	1114 29	1236 15	1333 4	1408 8	1461 13	1499 15	1437 1	1479 19	1533 22	1605 2	1737 2	1751 27	1799 2	1908 2	2034 22	2078 24	2129 26	2107 25	2252 22	2311 24	2422 23	2495 26	2537 27	2617 29	2727 2	1936 4	1935 4	
	ND <	[%] [m	35 8	35 9	29 11	28 12	12 13	14 14	9 14	9 14	22 14	22 14	17 15	17 16	21 17	24 17	20 17	20 19	9 20	11 20	11 21	11 21	13 22	11 23	11 24	13 24	16 25	18 26	19 27	19 19	19 19	
FLACH	Vs N	[S/m]	387	387	410	403	432	413	444	441	491	493	539	539	560	573	624	635	711	723	757	757	771	822	822	833	803	817	829	846	845	
ΝT	MD	[%]	55	56	29	31	~	9	18	19	17	27	5	27	20	19	4	13	£	16	18	18	24	11	5	ი ი	80	80	÷	1	4	
BRA	Vs	[m/S]	500	512	627	661	812	816	939	923	932	1026	1115	1229	1343	1331	1446	1460	1563	1651	1844	1841	1933	1641	1716	1764	1782	1782	1832	1832	1876	
JRR	Vs MD] [%]	23	23	18	15	15	7	7	2	7	7	6	6	10	4	4	19	20	20	23	23	22	4	4	-	1	1	3			
BOL		[m/S	443	444	463	497	497	502	502	547	536	536	545	545	559	584	584	617	683	683	716	716	703	742	742	719	719	717	731	602	917	
BNALP BOURR	Vs MD	s] [%]	7 55	4 46	4 45	3 40	33	9 19	9 15	2 7	5 4	8 6	4 7	8 13	0 18	3 18	0	8 8	9 11	4 14	8	3 5	3 5	3 5	4 17	4 17	7 12	7 12	7 12	7 12	7 12	
)[m/;	777 7	7 844	4 834	1 873	2 949	1 1099	1199	4 1292	2 1325	3 1428	9 1564	3 1688	3 1800	1923	1931	1 1928	1 1909	4 2064	7 2228	3 2093	3 2093	3 2093	7 2624	3 2624	5 2737	5 2737	4 2737	3 2737	0 2737	
BALST	Vs MD	[m/S] [%] [m/S] [%] [m/S] [%] [m/S]	681 77	780 57	922 34	1040 21	57 12	1256 11	1304 10	1334 14	1300 12	01 13	1118 19	1103 23	1089 28	1115 30	1132 30	1159 31	1173 31	1249 24	1332 27	1358 26	1383 26	1411 26	1306 17	1485 26	1492 25	1499 25	1517 24	1529 23	1722 20	
		m] [%	24 68	23 78	16 92	25 10	37 1157	36 12	47 13	50 13	41 13	45 1201	45 11	36 11	35 10	29 11	24 11	26 11	26 11	17 12	17 13	17 13	17 13	18 14	19 13	15 14	13 14	15 14	16 15	17 15	19 17	
AIGLE	Vs MD	,] [s/u	565 2	-	701	872 2	933	1022	1134 4	1226	1314 4	1235 4	1229 4	1269 3	1244	1288 2	1357 2	1377 2	1387 2	1520	1526 1	1556 1	1566	1587 1	1605 1	1720 1	1790 1	1816	1850	1874	1910	
		u] [%]	29 5	26 5	9 7	16 8	19 9	14	12	19 1	26 1:	26 1:	25 1:	32 1:	14	4	€ 1	3	10	0	0	0	13 1	13 1	19 1	19 1	19 1	19 1	4	4	9	
ACB	Vs MD	[m/S] [%]	383	395	469	534	575	547	531	577	627	621	678	726	638	638	708	708	762	841	841	841	743	743	791	791	791	791	976	976	1072	
Depth	Ξ		0.0	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	19.0	20.0	21.0	22.0	23.0	24.0	25.0	26.0	27.0	28.0	

 Tab. 4.3:
 Mean shear wave velocity values (vs) from MASW and refraction velocity derivation at each station and the corresponding mean deviation percentage (MD).

5 SUMMARY AND CONCLUSIONS

- From December 2008 until June 2009, combined seismic s- and p-wave surveys have been carried out at 20 SED earthquake monitoring stations in various parts of Switzerland, in the Jura range, the foreland basin, the Prealps and in the Alps.
- In the close vicinity of the 20 earthquake monitoring stations, 2 ideally perpendicular seismic profiles have been surveyed with both horizontal and vertical sensors.
- The shear wave data sets have been evaluated by conventional diving wave refraction tomography techniques in order to derive the s-wave velocity field along the seismic line.
- The p-wave data sets have been processed
 - firstly, to derive a 2D s-wave velocity field by using the MASW (Multichannel Analysis of Surface Waves) technique;
 - and secondly, according to the hybrid seismic data processing scheme for representing the subsurface structures in a combined reflection seismic section with the superimposed p-wave velocity field.
- Based on the MASW results, the scalars v_{s,5}, v_{s,10}, v_{s,20}... have been calculated as functions of profile meter and as 1D shear wave velocity models effective for the SED earthquake monitoring stations.
- The shear wave refraction velocities, the compressional wave refraction velocities, the MASW inversion velocities and the maximum shear wave velocities calculated from the compressional wave refraction velocities have been correlated for assessing the accuracy of the obtained values.

Schwerzenbach, 24th July 2009

Jaller To.

Walter Frei dipl. Natw. ETH managing director

Morenz Keller

dipl. Natw. ETH project manager

BIBLIOGRAPHY

Gebrande H and Miller H., 1985. **Refraktionsseismik** (in German). In: F. Bender (Editor), *Angewandte Geowissenschaften II*. Ferdinand Enke, Stuttgart; pp. 226-260.

Gebrande, H., 1986. **CMP-Refraktionsseismik.** In: L. Dreses et al.; *Symposium: Seismik auf neuen Wegen* sponsored by Dt. Vereinigung d. Erdölgeol. u. Erdöling., Celle, 191-205

Park, C.B., Miller R.D., and Xia, J., 1996: Multi-channel analysis of surface waves using Vibroseis. Exp. Abs., Soc. Expl. Geophys., p. 68–71.

Park, C.B., Miller, R.D., and Xia, J., 1998, Multichannel analysis of surface waves. *Geophysics*, vol. 64, n. 3, p. 800-808.

Park, C.B., Miller, R.D., and Xia, J., 1999, **Imaging dispersion curves of surface waves on mulit-channel record.** In: *68th Ann. Internat. Mtg. Soc. Expl. Geophys.*, Expanded Abstracts, p. 1377-1380..

Schuster, G. T. and Quintus-Bosz, A., 1993: **Wavepath eikonal traveltime inversion: Theory.** *Geophysics*, vol. 58, p.1314-1323, DOI:10.1190/1.1443514.

Watanabe, T.; Matsuoka, T. and Ashida, Y., 1999: **Seismic traveltime tomography using Fresnel volume approach.** *SEG Expanded Abstracts* 18, pp. 1402, DOI:10.1190/1.1820777.

Xia, J., R.D. Miller, and C.B. Park, 1999: Estimation of near-surface shear-wave velocity by inversion of Rayleigh wave. Geophysics, vol. 94, p. 691-700.