swiss*nuclear*: PEGASOS Refinement Project: SP2 – Ground Motion Characterization

Contract no. PMT-VT-1032

Seismic Shear Wave Velocity Determination and Hybrid Seismic Survey at the SED-Station LLS (Linth-Limmern GL)

Date of Field Data Acquisition 30th March 2009

Report

Client

swissnuclear Project PRP Frohburgstrasse 17 4601 Olten

Contractor

GeoExpert ag Seismic Prospecting Ifangstrasse 12b P.O. Box 451 8603 Schwerzenbach

8603 Schwerzenbach, 29th May 2009

INDEX

1 INTRODUCTION	3
1.1 Survey objectives	3
1.2 The choice of the appropriate surveying methods	
2 FIELD DATA ACQUISITION PARTICULARS	4
2.1 Time Schedule	4
2.2 Summary of Data Acquisition Parameters	
2.3 Composition of Seismic Field Crew.	
2.4 Location	
2.5 Recording Conditions and Line Setup	5
2.6 Seismic wave generation	6
3 SEISMIC DATA PROCESSING AND IMAGING OF THE RESULTS	7
3.1 General Remarks	7
3.2 Shear Wave Refraction Tomography	
3.2.1 Reformatting and field geometry assignment	7
3.2.2 First break time picking	7
3.2.3 Analytical Determination of Refraction Velocities	8
3.2.4 Tomographic inversion of the velocity gradient field by iterative modeling	9
3.3 MASW Processing	
3.3.1 Reformatting and field geometry assignment	
3.3.2 Calculating the dispersion image (overtone)	
3.3.3 Analysis of the dispersion image	
3.3.4 Inversion of dispersion curves resulting in a 1D shear wave velocity distribution	
3.3.5 Gridding and plotting of 2D vs-velocity field	
3.3.6 Calculation of the average shear wave velocity	
3.3.7 Calculation of the shear wave velocity scalars vs,5, vs,10,	
3.4 Hybrid Seismic Data Processing.	
3.4.1 p-wave Reflection Seismic Processing Sequence	
3.4.2 The presentation of reflection seismic data 3.4.3 p-wave refraction tomography processing	
	19
4 DISCUSSION OF THE RESULTS	22
4.1 Summary and Validation of the Results	22
4.2 Validation of the methods and their results	
4.3 Error Estimates	23
5 SUMMARY AND CONCLUSIONS	24

1 INTRODUCTION

1.1 Survey objectives

The seismic survey's main task is to provide information about the distribution function of the shear wave velocities in the depth interval of the uppermost 30 m along a 100 m long seismic profile.

Additionally, the following objectives are to be met:

- the mapping of the topography of the rock face, i.e. the thickness of the Quaternary deposits;
- the determination of the thickness of the weathered zone and its degree of decompaction at the bedrock surface;
- a general view of geological structures.

1.2 The choice of the appropriate surveying methods

Several methods are available for deriving the s-wave velocity distribution in the subsurface at any given position:

- in-situ measurement by down-hole or crosshole seismic surveying;
- shear-wave refraction tomography profiling;
- dispersion analysis of surface waves (MASW; Multiple channel Analysis of Surface Waves)

The surveys are to be carried out at, or as close as possible near some 20 SED earth quake monitoring stations in Switzerland. Ideally, the surveys are to be conducted on two orthogonal profiles in order to derive at their point of intersection a robust 1D s-wave velocity distribution function by correlation. To this end, the methods of MASW and shear-wave refraction tomography profiling are to be combined.

The results are to include the following fundamental parameters $v_{s,5}$, $v_{s,10}$, $v_{s,20}$, $v_{s,30}$, $v_{s,40}$, $v_{s,50}$, $v_{s,100}$ are to be calculated, also an error estimation of all values.

The data acquired for the MASW method are to be subjected to complementary **p-wave hybrid seismic data processing** in order to image the geological structures.

2 FIELD DATA ACQUISITION PARTICULARS

2.1 **Time Schedule**

<i>Date</i> 30.03.2009	<i>Time</i> 0730 0730 - 0845 0845 - 0900 0900 - 1015 1015 - 1030 1030 - 1115 1130 - 1155 1155 - 1230 1330 1420	Activities / remarks arrival from Schwerzenbach dislocation to the cavern site reconnaissance lay-out of recording spread profile 1 p- and s-wave tests compressional wave data recording profile 1 shear wave data recording profile 1 retrieval of the recording spread departure from cavern departure from site

2.2 **Summary of Data Acquisition Parameters**

Compressional Wave Data Acquisition

# of active channels	96
geophone type	4.5 Hz natural frequency, vertical velocimeter
receiver station spacing	1.5 m
# of geophones/station	1
source point spacing	3.0 m
source type	vertical hammer (6 kg) striking on the concrete foundation
sampling rate	500 μs
recording time	2048 ms
field filters	0.5 Hz LC, anti-alias
# of field records	70

Shear Wave Data Acquisition

of active channels 48 geophone type 10 Hz natural frequency, horizontal velocimeter receiver station spacing 3.0 m # of geophones/station 1 source point spacing 6.0 m source type horizontal hammer (6 kg) striking horizontally at the gallery's socket sampling rate recording time 500 us 512 ms field filters 2 Hz LC, anti-alias # of field records 50 at 25 positions

Seismic data acquisition in the gallery. The yel-Fig. 2.1: low boxes contain 24 A/D-converters each. In the background the seismic observation station.

2.3 Composition of Seismic Field Crew

Personnel

rce

Equipment

- 96 vertical geophones 4.5 Hz
- 48 horizontal geophones 12 Hz
- 6 seismic cables
- 1 seismic acquisition system Summit Compact, 96 channels
- 1 laptop computer for data acquisition
- 3 walkie-talkies
- 1 hammer 6 kg
- 1 steel plate
- 1 metal-plated wooden beam
- 1 van (FIAT Ducato 4x4)

2.4 Location

The seismic monitoring station LLS (Linth-Limmern dam, Linthal GL) is situated in a gallery in hard layered limestone sediments near Linth-Limmern dam. Some 500 m away, a geological window opens into Triassic sediments and the crystalline basement



Fig. 2.2: The red cross marked seismic monitoring station LLS (Linth-Limmern dam, Linthal GL) is located in Glarus' mesozoic sediments (Malm). (map: geodata @ swisstopo).

2.5 Recording Conditions and Line Setup

The seismic data acquisition was done in the galleries of Linth-Limmern dam corporation. The seismic observation station lies in a small cavern directly besides the "Fensterstollen" in which the 150 m array of geophones was placed. The gallery has a concrete basement of about 50 cm, in which small holes were drilled and the geophones are plugged-in.

2.6 Seismic wave generation

The vertical hammer impacts strike at this concrete basement. So in the seismic p-wave records should image a two-layer-case. Each p-wave source lies between two geophones, directly on the geophone layout.

Shear wave data acquisition was expected to be hard to be accomplished. Due to limited space, the shear wave stimulation with the wooden beam utilized at other sites was not possible. Alternatively, hammer strikes on the gallery's walls were done (directly at the nearly unweathered limestone). Because of that, the shear wave sources were usually placed 1.5 m away from the seismic line on both sides of the geophone layout.

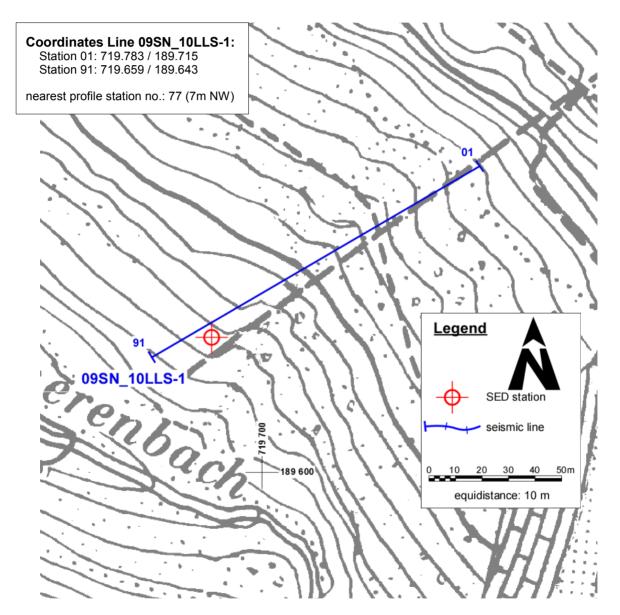


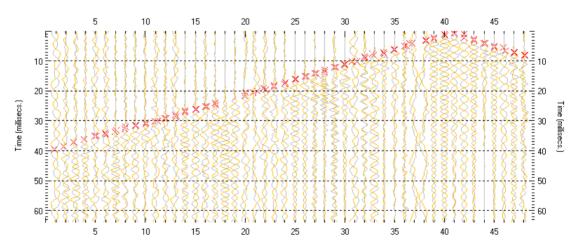
Fig. 2.3: Situation map with the trace of seismic profile 09SN_10LLS-1 (Linth-Limmern dam, GL). (background map: © Kt. Glarus/SWISSFOTO+PK25 © 2008 SWISSTOPO (DV012728.1, DV012446).)

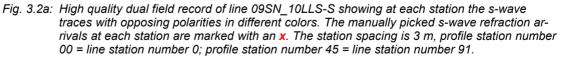
3 SEISMIC DATA PROCESSING AND IMAGING OF THE RESULTS

3.1 General Remarks

- For the shear and compressional wave refraction seismic evaluation the package **RAYFRACT** by Intelligent Resources Ltd., Vancouver CAN, was used. The system features the technique of diving wave tomography (www.rayfract.com).
- The system **SPW** (Seismic Processing Workshop) of Parallel Geoscience Corporation, Austin US-TX, was used for reflection seismic data processing (www.parallelgeo.com).
- Data processing of surface waves (MASW processing) was conducted with the software package **SurfSeis** V2.0 of Kansas Geological Survey in Lawrence US-KS.

A detailed description of the various surveying methods will be included in the general summary report.


3.2 Shear Wave Refraction Tomography


3.2.1 Reformatting and field geometry assignment

After reformatting the field data into the Rayfract format the field geometry is applied.

3.2.2 First break time picking

At each shot position, two seismic records were acquired in both activation directions. These two records are displayed superimposed with different colors on each other in Fig 3.2a together with the manually determined first arrival time picks.

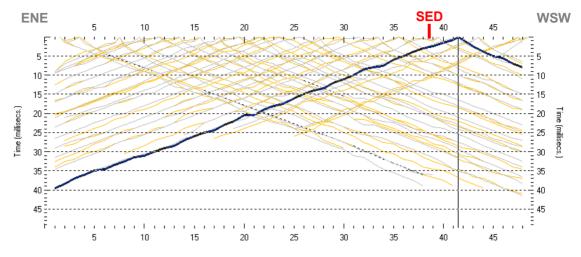
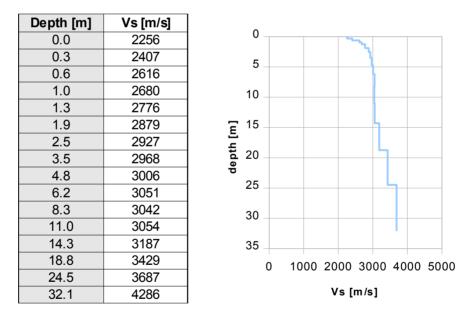
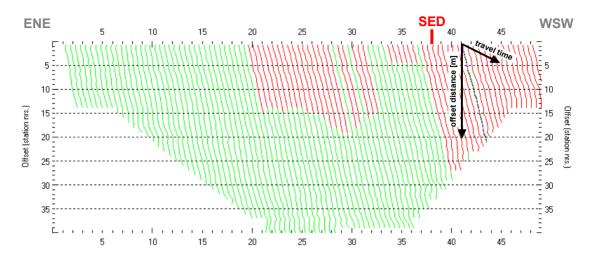
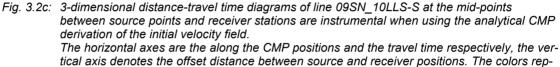
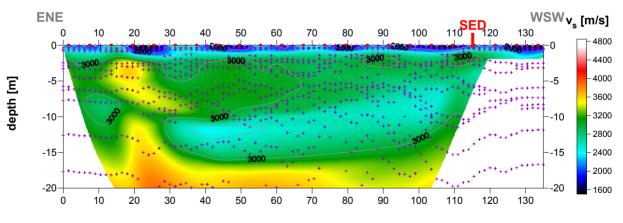



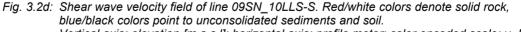
Fig. 3.2b: Curves of s-wave first break time picks of line 09SN_10LLS-S.


3.2.3 Analytical Determination of Refraction Velocities


An initial 1D-velocity function (averaged 1D velocity-depth profiles derived by the Delta-t-V method, see Tab. 3.2a) is determined in the 3-dimensional time-offset-CMP-domain of all first break arrival time curves in the 3-dimensional time-offset-CMP-domain (see. Fig. 3.2c).

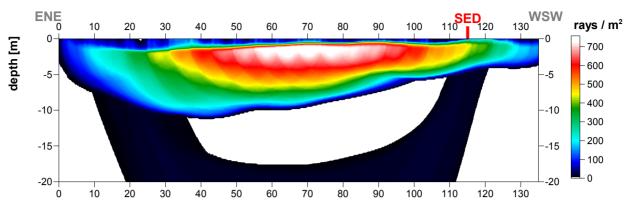
Tab. 3.2a: Initial 1D s-wave velocity function derived from real data of line 09SN_10LLS-S (mean values between line station 30 and 60 (= profile stations 45 - 90)).

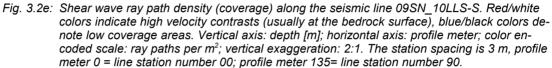


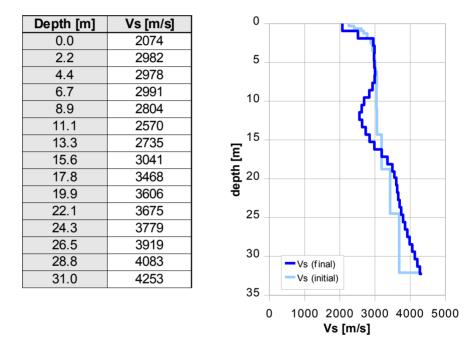


resent different velocity layers. The station spacing is 3 m, profile station number 0 = line station number 00; profile station number 45 = line station number 91. The colors represent different velocity layers.

3.2.4 Tomographic inversion of the velocity gradient field by iterative modeling


The velocity field is iteratively refined by the subsequent Wavepath Eikonal Traveltime (WET) tomographic inversion process. The inversion results are portrayed in Fig. 3.2d as a gridded velocity contour section and in Fig. 3.2e as a ray path density section.





Vertical axis: elevation [m a.s.l]; horizontal axis: profile meter; color encoded scale: v_s [m/s]; vertical exaggeration: 2:1; gray diamonds: receiver positions; red triangles: source positions; magenta crosses: positions of determined velocity values. The station spacing is 3 m, profile meter 0 = line station number 00; profile meter 135= line station number 91.

Tab. 3.2b: Final 1D s-wave velocity model derived from real data of line 09SN_10LLS-S (horizontal average of all values) for the profile segment (between line stations 30 and 60) with a geological setting resembling the one at the SED station. The calculated values of the initial 1D swave velocity model are given in Tab. 3.2a.

The derived low velocity zone in 12 m depth seems to be artificial due to a velocity gradient near by 0. The velocities below this depth result only by inversion of low coverage data (dark colors in Fig. 3.2e) – they are not reliable.

3.3 MASW Processing

3.3.1 Reformatting and field geometry assignment

The data preparation steps for the dispersion analysis include

- the assignment of the field acquisition geometry
- the selection of suitable offset ranges (=arrays) between 10 m and 50 m for dispersion, and the splitting of the field records in forward and reverse shooting direction data sets
- the reformatting of the data into the specific KGS format

X - - ... - - o-o-o-o (forward shooting or so-called PLUS direction)

respectively

o-o-o-...-o-o-o - - ... - - X (reverse shooting or so-called MINUS direction).

where **X** = shot position

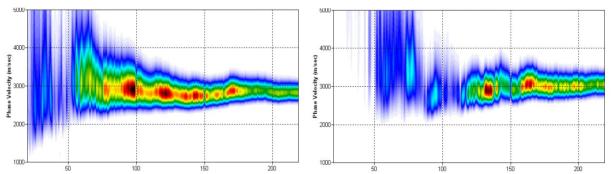
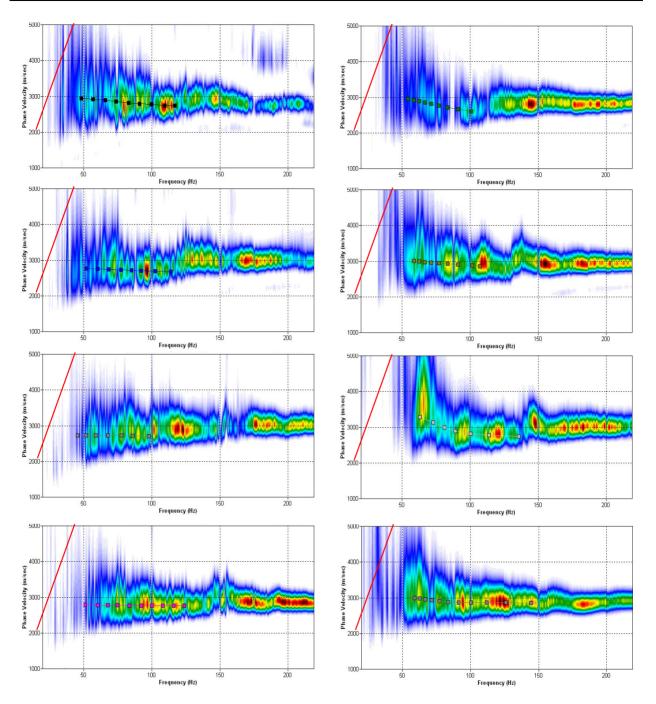
o = receiver station

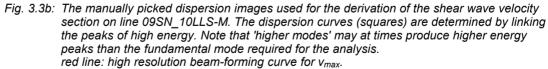
- = 1.5 m offset

The active array used at SED-station LLS are the receiver station in the shot offset range between 10 and 75 m.

3.3.2 Calculating the dispersion image (overtone)

The result of dispersion analysis is the color encoded acoustic energy distribution in the phase velocity - frequency plane (see Fig. 3.3a and b).

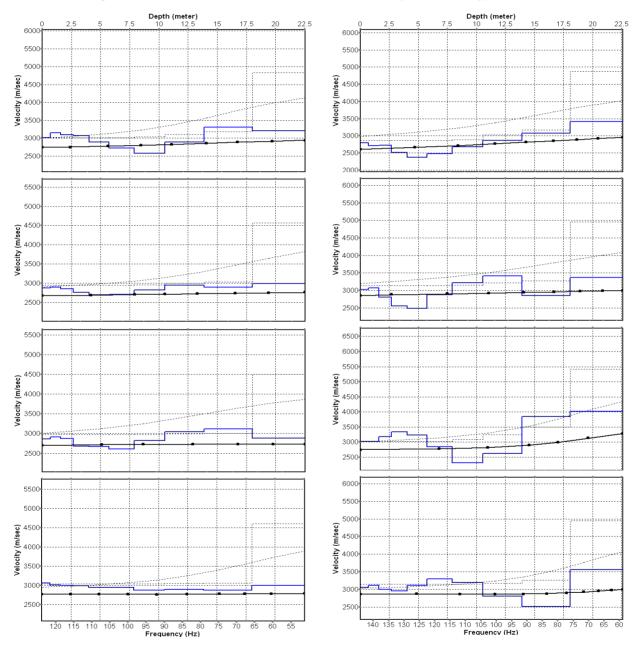



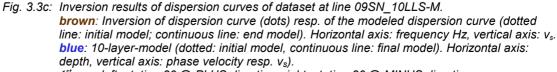

Fig. 3.3a: Dispersion image of high quality data (left) at midpoint station 66 as found on 80 % and of moderat quality data (right) at midpoint station 48 representing about 20 % of the MASW dataset of site LLS.

Horizontal axis: frequency from 20 to 220 Hz; vertical axis: phase velocity from 1000 to 5000 m/s; color code: colors from white (no energy) to blue - green - yellow - red - black point to increasing energy amplitude values.

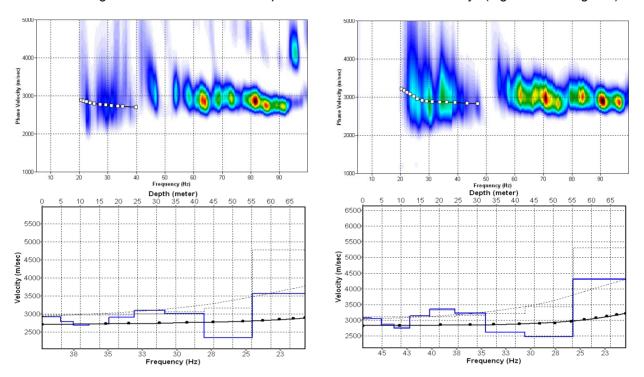
3.3.3 Analysis of the dispersion image

In the dispersion graphs as calculated in section 3.3.2 above, the curves joining the amplitude peaks of the fundamental modes are determined either by subjective inspection or in a semi-automated manner. On datasets with poorly defined amplitude peaks or with a highly irregular alignment of the peaks, the danger of obtaining improbable or wrong results is real and can only be mitigated by the processing experience and the a-priori knowledge of the geological setting by the geophysicist responsible for the data evaluation.


1st row: left: station 30 @ PLUS direction; right: station 30 @ MINUS direction 2nd row: left: station 40 @ PLUS direction; right: station 40 @ MINUS direction 3rd row: left: station 50 @ PLUS direction; right: station 50 @ MINUS direction 4th row: left: station 62 @ PLUS direction; right: station 60 @ MINUS direction



3.3.4 Inversion of dispersion curves resulting in a 1D shear wave velocity distribution


Inversion of the extracted dispersion curves was performed using the algorithm described by Xia et al. (1999).

The inversion process is started by setting the maximum depth (z_{max}) to be in the order of 30% of the largest wavelength for an initial model consisting of 10 layers of increasing thicknesses. For all 10 layers the Poisson's ratio is assumed to be 0.3 and the rock/soil density to be 2.3 g/cm³. The inversion process is concluded either after twelve iterations or when the convergence condition of a RMS-error of less than 3 m/s (phase velocity) is met.

1st row: left: station 30 @ PLUS direction; right: station 30 @ MINUS direction 2nd row: left: station 40 @ PLUS direction; right: station 40 @ MINUS direction 3rd row: left: station 50 @ PLUS direction; right: station 50 @ MINUS direction 4th row: left: station 62 @ PLUS direction; right: station 60 @ MINUS direction

Dispersion analyses of records with longer receiver arrays should – by theory – increase the investigation depth. At LLS, with both directions, MASW processing with the maximal array length of 135 m confirms and improves the results from 65 m arrays (Fig. 3.3d and Fig 3.3f).

Fig. 3.3d: Top: dispersion images of over-all arrays (30...170 m offset) of line 09SN_10LLS-M in PLUS (left) and of the over-all array (15... 142 m offset) in MINUS (right) direction; dotted fine line: signal-noise ratio for the designated f-v_{ph}-value. Red line: high resolution beam-forming curve for v_{max}.

Below: The two respective inversion results; **brown**: inversion of dispersion curve; **blue**: 10-layer-model. Horizontal axis: depth, vertical axis: phase velocity resp. v_s .

3.3.5 Gridding and plotting of 2D v_s-velocity field

By assembling the 1D vs - depth functions of all stations the final 2D vs-field is derived using a Kriging gridding procedure as portrayed in Fig. 3.3e below:

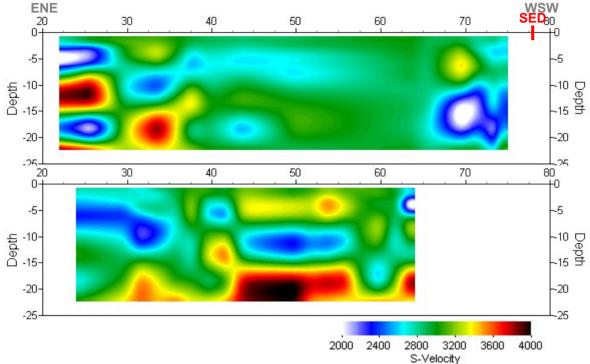


Fig. 3.3e: PLUS- (above) and MINUS- (below)-MASW-processed shear wave velocity fields of line 09SN_10LLS-M. Profile station number 20 = profile meter 30, station spacing is 1.5 m.

3.3.6 Calculation of the average shear wave velocity

In order to calculate a representative shear wave velocity-depth function of line 09SN 10LLS-M at the SED station, all computed 1D-vs-depth functions between seismic profile station no. 30 and 60 are averaged (non-weighted mean values). The vs-depth-function is shown in Tab. 3.3a.

Depth [m]	Vs- [m/s]	Vs+ [m/s]	Vs [m/s]	0 —	
0.7	3015	2920	2968		
1.6	3034	2943	2989	5 —	
2.7	3048	2909	2978		
4.0	3066	2789	2928	<u></u> 10 –	
5.7	2992	2707	2849	<u></u> 트 10 —	
7.9	2849	2675	2762	de bth	
10.5	2721	2851	2786	ື ^ອ ₁₅ –	
13.9	2933	3115	3024		
18.1	3310	3038	3174	20	- PLUS
22.6	3530	3096	3313	20	- MINUS
				•	- MEAN
				25 +	1000 2000

1000 2000 3000 4000 0 Vs [m/s]

Tab. 3.3a: Averaged vs - depth function of line 09SN 10LLS-M at the SED station. Blue line: MASW-'PLUS' processing, red line: MASW-'MINUS' processing; green line: average of PLUS- and MINUS-functions.

The inversion of the four 135 m-array dispersion curves data (15 to 142 m offset (MINUS) resp. 30 to 170 m (PLUS), see Fig. 3.3D) are given in Tab. 3.3B. These values are complemented with the values derived of the 65 m-array analyses (Tab. 3.3a).

135 m array					65 m	array	
depth	m1+	m1-	m	depth	65 -	65 +	65
2.1	2917	3083	3000	0.7	3015	2920	2968
4.8	2918	3050	2984	1.6	3034	2943	2989
8.2	2790	2854	2822	2.7	3048	2909	2978
12.3	2684	2743	2713	4.0	3066	2789	2928
17.6	2720	3137	2928	5.7	2992	2707	2849
24.1	2909	3363	3136	7.9	2849	2675	2762
32.3	3100	3238	3169	10.5	2721	2851	2786
42.5	3010	2619	2815	13.9	2933	3115	3024
55.2	2338	2485	2412	18.1	3310	3038	3174
69.0	3562	4312	3937	22.6	3530	3096	3313

Tab. 3.3b: v_s -depth values of the four MASW-derived dispersion curves of both 135 m and 65 m arrays of seismic line 09SN_10LLS-M.

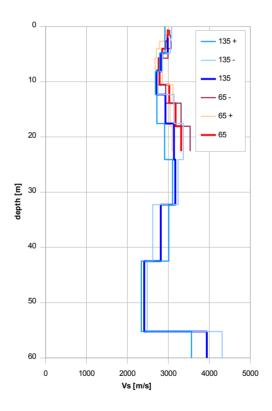


Fig. 3.3f: Comparison of the ensemble of inversion results of line 09SN_10LLS-M, either using the 65 m- and the 135 m-arrays. blue lines: analyses of 135 m arrays of line 09SN_10LLS-M red lines: analyses of 65 m arrays of line 09SN_10LLS-M bold lines: mean of both direction analyses.

3.3.7 Calculation of the shear wave velocity scalars v_{s,5}, v_{s,10}, ...

The parameters $v_{s,5}$, $v_{s,10}$, $v_{s,15}$, $v_{s,20}$, $v_{s,25}$ represent the average shear wave velocities in the depth interval between the surface and the respective depth levels and are determined by the formula

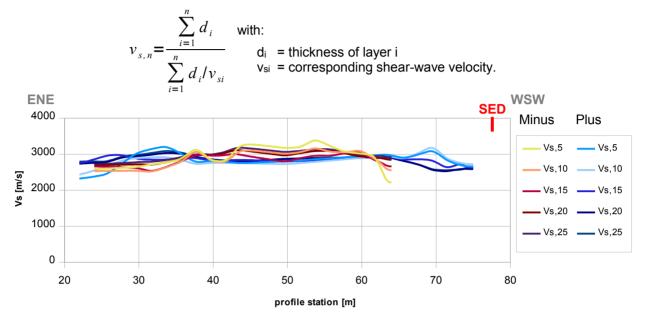


Fig. 3.3g: Graphs of the averaged vs,5...-values along the line 09SN_10LLS-M for the PLUS- (blue lines) and MINUS- (red lines) directions.

The average values of the s-wave velocity model $v_{s,5}$, $v_{s,10}$, $v_{s,15}$, $v_{s,20}$, $v_{s,25}$ (= average shear wave velocity from the surface to depths of 5 m, ...until 100 m) on the line segment nearest to the SED station (Tab. 3.3d) are summarized below:

	Vs,5	Vs,10	Vs,15	Vs,20	Vs,25	Vs,30
MINUS	3081	3035	2937	2991	3065	n/a
PLUS	2893	2806	2850	2896	2911	n/a
MEAN	2987	2920	2893	2943	2988	n/a

 Tab. 3.3d:
 The average shear wave velocities within the depth intervals from surface down to 5 m, etc.... to 25 m, calculated for the line segment with a subjectively most similar geology to the SED station (profile station 30 to 60 of line 09SN_10LLS-M).

3.4 Hybrid Seismic Data Processing

3.4.1 p-wave Reflection Seismic Processing Sequence

A) Data conditioning

- A1 Reformatting and quality verification of field data
- A2 Recording geometry assignment
- A3 Data editing (suppression of bad / dead traces, etc.)
- A4 Preliminary analysis of refraction velocities

B Filtering and deconvolution

- B1 Analytical muting of refraction arrivals
- B2 Amplitude recovery / amplitude equalization in time and frequency domains
- B3 Predictive deconvolution parameter tests / application
- B4 Determination of band limiting corner frequencies / application
- B5 Optional 2-D filtering

C) Velocity analysis and stack

- C1 Common Depth Point (CDP) sort
- C2 Semblance velocity analysis using supergathers of 3 5 CDP's
- C3 Optional dip move-out correction
- C4 Normal Move-Out (NMO) correction and application of stretch mute
- C5 Band-pass filtering
- C6 CDP stack
- C7 Optional coherency filtering

D) Time-depth conversion

- D1 Optional spiking deconvolution
- D2 Band-pass filtering
- D3 Depth conversion

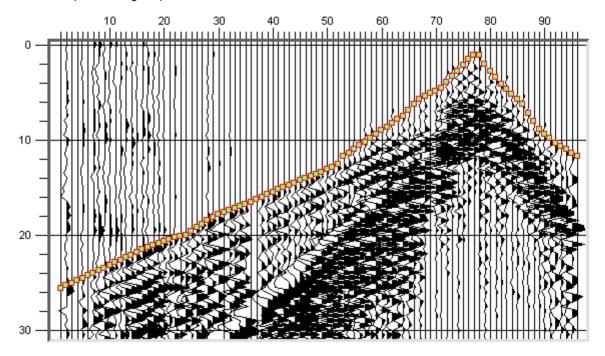
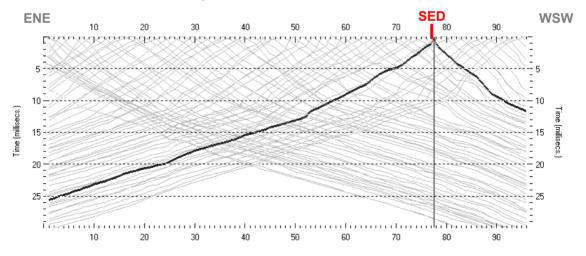
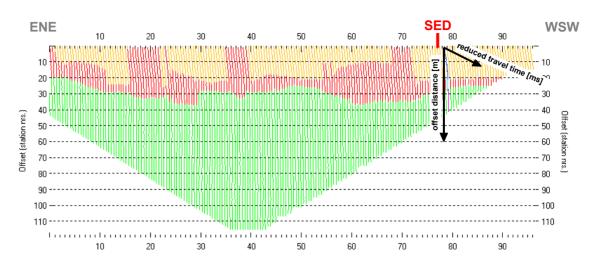
D4 Final display of seismic depth section with inversed polarity (non-SEG-convention)

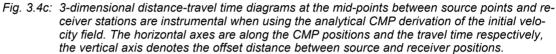
3.4.2 The presentation of reflection seismic data

The reflection seismic processing of the p-wave dataset does not give any useful result for lack of reflection events in the nearly homogeneous limestone.

3.4.3 p-wave refraction tomography processing

The seismic p-wave refraction processing steps are analogous to those described in paragraph 3.2. For a detailed method statement and a description of the processing steps please refer to the summary report. The Figs. 3.4a to 3.4c and Tab. 3.4a illustrate the intermediate processing steps and the final result.


Fig. 3.4a: p-wave records of 09SN_10LLS-P with positive amplitude excursions in black. Colored dots mark the manually picked first break arrival times. Vertical axis: travel time in ms, horizontal axis: station numbers spaced at 1.5 m.

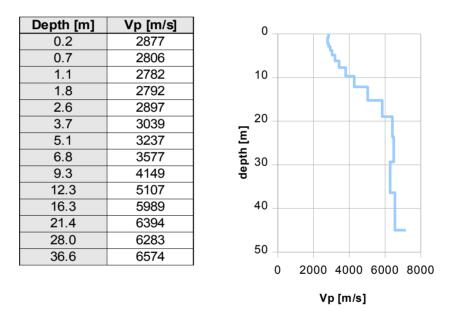
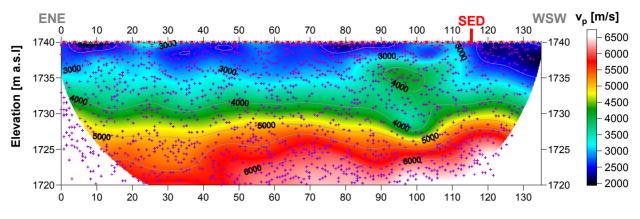
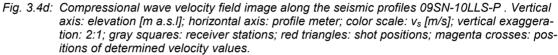
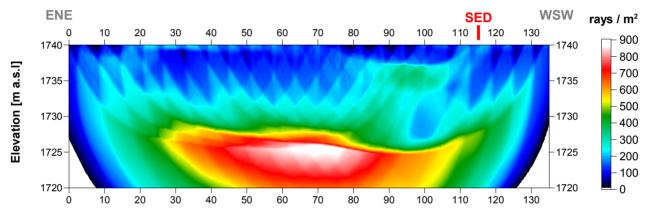
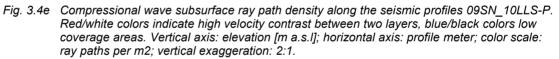


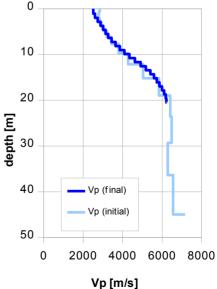
Fig. 3.4b: Travel time curves of p-wave arrival time picks of line 09SN_10LLS-P. Vertical axes: travel time [ms], horizontal axes: station number (= profile meter).






Tab. 3.4a: Initial 1D p-wave velocity model derived from real data of line 09SN_10LLS-P.





The station spacing is 1.5 m, profile meter 0 = line station number 00; profile meter 135 = line station number 90.

Depth [m]	Vp [m/s]	0	
0.0	2512		
1.5	2669		
2.9	2875	10	
4.2	3068		
5.5	3271	20	
6.8	3540		
8.2	3857	و من المعالية المحالية المحالي المحالية المحالية المح المحالية المحالية المح	
9.5	4214	둘 30	
10.8	4622	dep	
12.1	5049		
13.4	5408	40	Vp
14.8	5659		Vp
16.1	5862	50	
17.4	6053	50	
18.7	6181	0	2000
20.1	6221]	v

Tab. 3.4b: Final 1D p-wave velocity model derived from real data at positions most similar to the geological setting at SED station between profile station 30 and 60 at line 09SN_10LLS-P. Initial 1D p-wave velocity model values are given in Tab. 3.4a.

4 DISCUSSION OF THE RESULTS

4.1 Summary and Validation of the Results

Compressional and shear wave velocity data from refraction seismic surveys both p-wave and s-wave and also the MASW survey data of profiles 09SN_10LLS-1 are shown in Tab. 4.1 for the uppermost 30 m. The calculated shear wave velocity $v_{\text{s(calc)}}$ in Tab. 4.1 is derived by using a theoretical $v_{\text{p}}/v_{\text{s}}$ -ratio of $\sqrt{3}$.

refr calc MASW65 MASW 135 112 2074 1450	0	Vs1	Vs	Vs	Vs	Vp	Depth
998 2517 1500 2968 38 2954 1581 2989 3000 975 2987 1660 2978 1000 905 2976 1735 2928 1000 32 2984 1808 2984 32 2984 1808 2984 139 2991 1986 10 344 2931 2104 2762 2822 57 2837 2227 10 108 2692 2360 15 322 2558 2669 2713 100 2633 2835 15 3102 3207 2928 325 2982 3224 10 328 2982 3224 10 328 2982 3224 10 328 3192 3307 2928 362 3355 3384 3174 395 3495 3461 10 3495 3461 10 10 3553 <	•	MASW 135	MASW65	calc	refr	refr	-
38 2954 1581 2989 3000 375 2987 1660 2978 1000 2978 32 2984 1808 2984 171 3002 1888 2849 339 2991 1986 10 10 10 10 392 2991 1986 10 10 10 10 444 2931 2104 2762 2822 2557 2837 2227 10 108 2692 2360 15 15 15 15 15 15 102 2633 2835 15 15 15 15 15 15 15 15 15 16 15 15 15 15 15 15 15 15 15 15 15 15 16 16 15 15 15 15 15 15 15 15 16 16 15 15 15 16 16 16 15 15 16 16 16 16 16 <				1450	2074	2512	0.0
375 2987 1660 2978 305 2976 1735 2928 32 2984 1808 2984 332 2984 1808 2984 332 2984 1808 2984 339 2991 1986			2968	1500	2517	2598	1.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_	3000	2989	1581	2954	2738	2.0
105 2976 1735 2928 32 2984 1808 2984 130 1888 2849 139 2991 1986 10 139 2991 1986 10 144 2931 2104 2762 2822 157 2837 2227 10 188 2692 2360 10 145 2623 2508 2786 1522 2558 2669 2713 100 2633 2835 15 179 2735 2990 3024 15 168 2982 3224 10 15 128 3192 3307 2928 20 162 3355 3384 3174 29 195 3495 3461 20 25 25 160 3553 3524 29 25 25	5		2978	1660	2987	2875	3.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			2928	1735	2976	3005	4.0
000 2001 1000 2762 2822 057 2837 2227		2984		1808	2984	3132	5.0
000 2001 1000 2762 2822 057 2837 2227			2849	1888	3002	3271	6.0
157 2837 2227	10			1986	2991	3439	7.0
88 2692 2360		2822	2762	2104	2931	3644	8.0
445 2623 2508 2786 422 2558 2669 2713 100 2633 2835				2227	2837	3857	9.0
22 2558 2669 2713 100 2633 2835 - 79 2735 2990 3024 - 108 2845 3122 - - 128 3192 3307 2928 - 162 3355 3384 3174 - - 195 3495 3461 - - 25 - 104 3553 3524 - 25 - Vp1(refra)				2360	2692	4088	10.0
22 2558 2669 2713 100 2633 2835	15		2786	2508	2623	4345	11.0
79 2735 2990 3024 E 08 2845 3122	15	2713		2669	2558	4622	12.0
79 2735 2990 3024 08 2845 3122				2835	2633	4910	13.0
28 3192 3307 2928 962 3355 3384 3174 995 3495 3461 04 3553 3524	Έ		3024			5179	14.0
28 3192 3307 2928 962 3355 3384 3174 995 3495 3461 04 3553 3524	Ц Ч				2845	5408	15.0
28 3192 3307 2928 962 3355 3384 3174 995 3495 3461 04 3553 3524	ថ្ 20			3224	2982	5585	16.0
362 3355 3384 3174 195 3495 3461	ĕ	2928		3307	3192	5728	17.0
04 3553 3524 25 Vp1(refra)			3174			5862	18.0
04 3553 3524 25 Vp1(refra)				3461	3495	5995	19.0
	25					6104	20.0
				3569	3606	6181	21.0
						6217	22.0
			3313		3664	6231	23.0
2701 2126	20	3136			3701		24.0
3745 30 30 Vs1(MASW65)	30				3745		25.0
3797 Vs(MASW135)					3797		26.0
3858					3858		27.0
3919					3919		28.0
3985 35 35	35				3985		29.0
4059 0 1000 2000 3000 4000 5000 6000 7000	n l						30.0

Tab. 4.1: Shear and compressional wave velocity model determined at the SED station LLS.

Fig. 4.1: Graphic display of shear (continuous lines) and compressional (dotted lines) wave velocities determined at the SED station.

The different signal production (= source geometry; see chap. 2.5) leads to different velocity information in the uppermost 3 to 5 meters, especially to too low values in the p-wave velocity image. Because the vertical hammer impacts strike at the concrete basement, the seismic records (Fig. 3.4a) show obviously a two-layer-case with a lower velocity layer covering a high velocity unit. On the other hand, the seismic shear wave records (Fig. 3.2a) seldom show a two-layer-case, mostly a one unit with small varieties in velocity values is found. We explain this observations by the strikes done directly to the limestone.

4.2 Validation of the methods and their results

Due to methodological differences, v_s velocities derived by MASW analysis and by the refraction tomography technique may differ considerably. This is because MASW analysis cannot image small rock/soil inhomogeneities as a dispersion image with an array length of i.e. 65-m only yields one single v_s-value at each depth. On the other hand, refraction diving wave tomography results produce v_s-sections with a high lateral resolution, but fail to provide information at greater depths and in particular with velocity inversions. So the shear wave refraction values are resilient only for the uppermost meters.

4.3 Error Estimates

The error estimates given in Tab. 4.3 below are relevant only in the context of this survey.

Surveying method	Type of result	Error estimate
v _s – refraction tomography	v _s – velocity field image	5 %
MASW only "+" or only "-" values*	v _s – velocity field image	8 %
MASW (mean of "+" & "-" values)*	v _s – velocity field image	5 %
v _p – refraction tomography	v _p – velocity field image	5 %**
Reflection seismic surveying	Image of subsurface structures	n.a.

* MASW values in the uppermost 2 - 3 m are prone to an error of about 25 %.

** v_p-refraction velocity values in the uppermost 3 - 5 m describe another geological unit (chap. 4.1).

Tab. 4.3 Error estimates for the methods applied. Note that higher error estimates are to be taken into account with increasing depths.

At the SED station LLS (Linth-Limmern GL), the MASW figures are in the same range as the values obtained from the shear wave diving wave refraction tomography surveys.

5 SUMMARY AND CONCLUSIONS

- In March 2009 a combined seismic s- and p-wave survey was carried out at the SED earthquake monitoring station in a gallery of Linth-Limmern Kraftwerke AG, canton Glaris.
- The shear wave data have been evaluated by conventional diving wave refraction tomography techniques in order to derive the s-wave velocity field along the seismic line. Due to the inherent constraints of the refraction tomography method, the depth of investigation is limited to 10 to 20 m under the prevailing geological conditions.
- The p-wave data have been processed
 - firstly to derive a 2D s-wave velocity field by using the MASW (Multichannel Analysis of Surface Waves) technique;
 - and secondly, according to the refraction seismic data processing scheme for representing the subsurface p-wave velocity field.
- The shear wave velocity range determined by the MASW method in the uppermost 30 meters spans from values of 2713 m/s to 3313 m/s.
- The scalar values derived by the MASW survey at the SED station (line 09SN_10LLS-1, profile station 45) are the following:
 - $v_{s,5}$ = 2987 m/s $v_{s,10}$ = 2920 m/s
 - $v_{s,15} = 2893 \text{ m/s}$
 - $v_{s,20} = 2943 \text{ m/s}$
 - $v_{s,25} = 2988 \text{ m/s}$
- The maximum reliable refraction shear wave velocity derived is about 3200 m/s at 17 m depth.
- The maximum reliable p-wave refraction velocity determined is 6200 m/s at 18 m depth.

Schwerzenbach, 29th May 2009

Lake Te:

Walter Frei dipl. Natw. ETH managing director

borenz Keller dipl. Natw. ETH project manager